Skip to main content
Log in

Preliminary application of 125I–nivolumab to detect PD-1 expression in colon cancer via SPECT

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The precise detection of PD-1/PD-L1 biomarkers helps to predict the prognosis of corresponding immunotherapy. 125I-labeled nivolumab targeting activated immune cells infiltrating the tumorous tissues was developed to evaluate the expression of PD-1 immune checkpoints. SPECT images indicated that 125I–nivolumab preferentially targeted to tumor-surrounded immune cells. This radiotracer can dynamically and quantitatively characterize the in vivo expression of immune checkpoints for colorectal cancer, thereby potentially enabling the early screening of patients, monitoring the efficacy of treatment, and assessing potential immunotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Smyth MJ, Ngiow SF, Ribas A, Teng MW (2016) Combination cancer immunotherapies tailored to the tumour microenvironment. Nat Rev Clin Oncol 13:143–158

    Article  CAS  Google Scholar 

  2. Postel-Vinay S, Aspeslagh S, Lanoy E, Robert C, Soria JC, Marabelle A (2016) Challenges of phase 1 clinical trials evaluating immune checkpoint targeted antibodies. Ann Oncol 27:214–224

    Article  CAS  Google Scholar 

  3. Gentzler R, Hall R, Kunk PR, Gaughan E, Dillon P, Slingluff CL Jr., Rahma OE (2016) Beyond melanoma: inhibiting the PD-1/PD-L1 pathway in solid tumors. Immunotherapy 8:583–600

    Article  CAS  Google Scholar 

  4. Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y, Cruz C, Bellmunt J, Burris HA, Petrylak DP, Teng SL, Shen X, Boyd Z, Hegde PS, Chen DS, Vogelzang NJ (2014) MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515:558–562

    Article  CAS  Google Scholar 

  5. Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH, Chen L, Pardoll DM, Topalian SL, Anders RA (2014) Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 20:5064–5074

    Article  CAS  Google Scholar 

  6. Herbst RS, Gordon MS, Fine GD (2013) A study of MPDL3280A, an engineered PD-L1 antibody in patients with locally advanced or metastatic tumors. Cancer Res 73:LB-288

    Article  Google Scholar 

  7. Callahan MK, Postow MA, Wolchok JD (2016) Targeting T cell co-receptors for cancer therapy. Immunity 44:1069–1078

    Article  CAS  Google Scholar 

  8. Guan J, Lim KS, Mekhail T, Chang CC (2017) Programmed death ligand-1 (PD-L1) expression in the programmed death receptor-1 (PD-1)/PD-L1 blockade: a key player against various cancers. Arch Pathol Lab Med 141:851–861

    Article  Google Scholar 

  9. Fridman WH, Pagès F, Sautès-Fridman C, Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12:298–306

    Article  CAS  Google Scholar 

  10. Topalian SL, Weiner GJ, Pardoll DM (2011) Cancer immunotherapy comes of age. J Clin Oncol 29:4828–4836

    Article  CAS  Google Scholar 

  11. Lee CM, Tannock IF (2010) The distribution of the therapeutic monoclonal antibodies cetuximab and trastuzumab within solid tumors. BMC Cancer 10:255

    Article  Google Scholar 

  12. Mamalis A, Garcha M, Jagdeo J (2014) Targeting the PD-1 pathway: a promising future for the treatment of melanoma. Arch Dermatol Res 306:511–519

    Article  CAS  Google Scholar 

  13. Ehlerding EB, England CG, McNeel DG, Cai W (2016) Molecular imaging of immunotherapy targets in cancer. J Nucl Med 57:1487–1492

    Article  CAS  Google Scholar 

  14. Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452:580–589

    Article  CAS  Google Scholar 

  15. Heskamp S, Hobo W, Molkenboer-Kuenen JD, Olive D, Oyen WJ, Dolstra H, Boerman OC (2015) Noninvasive imaging of tumor PD-L1 expression using radiolabeled anti-PD-L1 antibodies. Cancer Res 75:2928–2936

    Article  CAS  Google Scholar 

  16. Josefsson A, Nedrow JR, Park S, Banerjee SR, Rittenbach A, Jammes F, Tsui B, Sgouros G (2016) Imaging, biodistribution, and dosimetry of radionuclide-labeled PD-L1 antibody in an immunocompetent mouse model of breast cancer. Cancer Res 76:472–479

    Article  CAS  Google Scholar 

  17. England CG, Jiang D, Ehlerding EB, Rekoske BT, Ellison PA, Hernandez R, Barnhart TE, McNeel DG, Huang P, Cai W (2017) 89Zr-labeled nivolumab for imaging of T-cell infiltration in a humanized murine model of lung cancer. Eur J Nucl Med Mol Imaging 45:110–120

    Article  Google Scholar 

  18. Truillet C, Oh HLJ, Yeo SP, Lee CY, Huynh LT, Wei J, Parker MFL, Blakely C, Sevillano N, Wang YH, Shen YS, Olivas V, Jami KM, Moroz A, Jego B, Jaumain E, Fong L, Craik CS, Chang AJ, Bivona TG, Wang CI, Evans MJ (2017) Imaging PD-L1 expression with immunoPET. Bioconjug Chem 29:96–103

    Article  Google Scholar 

  19. Natarajan A, Mayer AT, Xu L, Reeves RE, Gano J, Gambhir SS (2015) A novel radiotracer for immunoPET imaging of PD-1 checkpoint expression on tumor infiltrating lymphocytes. Bioconjug Chem 26:2062–2069

    Article  CAS  Google Scholar 

  20. Li D, Cheng S, Zou S, Zhu D, Zhu T, Wang P, Zhu X (2018) Immuno-PET imaging of 89Zr labeled anti-PD-L1 domain antibody. Mol Pharm 15:1674–1681

    Article  CAS  Google Scholar 

  21. Lesniak WG, Chatterjee S, Gabrielson M, Lisok A, Wharram B, Pomper MG, Nimmagadda S (2016) PD-L1 detection in tumors using [64Cu]atezolizumab with PET. Bioconjug Chem 27:2103–2110

    Article  CAS  Google Scholar 

  22. Broos K, Keyaerts M, Lecocq Q, Renmans D, Nguyen T, Escors D, Liston A, Raes G, Breckpot K, Devoogdt N (2017) Author information non-invasive assessment of murine PD-L1 levels in syngeneic tumor models by nuclear imaging with nanobody tracers. Oncotarget 8:41932–41946

    Article  Google Scholar 

  23. Le DT, Uram JN, Wang H (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372:2509–2520

    Article  CAS  Google Scholar 

  24. Agata Y, Kawasaki A, Nishimura H, Ishida Y, Tsubata T, Yagita H, Honjo T (1996) Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol 8:765–772

    Article  CAS  Google Scholar 

  25. Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (81471714) and National Natural Science Foundation Youth Project (81701761).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao Li or Changjing Zuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Wang, C., Zhang, D. et al. Preliminary application of 125I–nivolumab to detect PD-1 expression in colon cancer via SPECT. J Radioanal Nucl Chem 318, 1237–1242 (2018). https://doi.org/10.1007/s10967-018-6124-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6124-6

Keywords

Navigation