Skip to main content
Log in

Adsorption of thorium (IV) by amorphous silica; response surface modelling and optimization

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The amorphous SiO2 (200–300 nm) was synthesized as an absorbent and thorium adsorption of SiO2 was investigated using experimental and RSM method. The SiO2 particles were made for the adsorption of thorium from aqueous solutions, and characterized by particle size measurement, XRD and SEM. The adsorption of thorium process was optimized with RSM method. The correlation between four variables was modeled and studied. Under optimum conditions, the adsorption capacity of SiO2 particles was found to be 134.4 mg/g, the correlation coefficient (R2) and the F value was obtained 0.96 and 1.98 × 10−6, respectively. In addition, the adsorption isotherms were examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hua Y, Wanga X, Zou Y, Wen T, Wang X, Alsaedi A, Hayat T, Wang X (2017) Superior sorption capacities of Ca–Ti and Ca–Al bimetallic oxides for U(VI) from aqueous solutions. Chem Eng J 316:419

    Article  Google Scholar 

  2. Zhang L, Zhang L, Wu T, Jing X, Li R, Liu J, Liu Q, Wang J (2015) In situ growth of ZnO nanorod arrays on cotton cloth for the removal of uranium (VI). RSC Adv 5:53433

    Article  CAS  Google Scholar 

  3. Naeem H, Bhatti HN, Sadaf S, Iqbal M (2017) Uranium remediation using modified Vigna radiata iste biomass. Appl Radiat Isot 123:94

    Article  CAS  Google Scholar 

  4. Han Z, Ma H, Shi G, He L, Wei L, Shi Q (2016) A review of groundwater contamination near municipal solid waste landfill sites in china. Sci Total Environ 569–570:1255–1264

    Article  Google Scholar 

  5. Chen YX, Huang XD, Han ZY, Huang X, Hu B, Shi DZ, Wu WX (2010) Effects of bamboo charcoal and bamboo vinegar on nitrogen conservation and heavy metals immobility during pig manure composting. Chemosphere 78:1177

    Article  CAS  Google Scholar 

  6. Han W, Gao G, Geng J, Li Y, Wang Y (2018) Ecological and health risks assessment and spatial distribution of residual heavy metals in the soil of an e-waste circular economy park in Tianjin, China. Chemosphere 197:325–335

    Article  CAS  Google Scholar 

  7. Bi C, Zhou Y, Chen Z, Jia J, Bao X (2018) Heavy metals and lead isotopes in soils, road dust and leafy vegetables and health risks via vegetable consumption in the industrial areas of Shanghai, China. Sci Total Environ 1349:619–620

    Google Scholar 

  8. Shakur HR, Saraeea RE, Abdib MR, Azimi G (2016) Selective removal of uranium ions from contaminated waters using modified-X nanozeolite. Appl Radiat Isot 43:118

    Google Scholar 

  9. Song S, Huang S, Zhang R, Chen Z, Wen T, Wang S, Hayat T, Alsaedi A, Wang X (2017) Simultaneous removal of U(VI) and humic acid on defective TiO2–x investigated by batch and spectroscopy techniques. Chem Eng J 576:325

    Google Scholar 

  10. Munagapati VS, Yarramuthi V, Kim DS (2017) Methyl orange removal from aqueous solution using goethite, chitosan beads and goethite impregnated with chitosan beads. J Mol Liq 329:240

    Google Scholar 

  11. Anirudhan TS, Rejeena SR (2011) Thorium (IV) removal and recovery from aqueous solutions using tannin-modified poly(glycidylmethacrylate)-grafted zirconium oxide densified cellulose. Ind Eng Chem Res 50:13288–13298

    Article  CAS  Google Scholar 

  12. Liu H, Feng Z, Lei L, Deng S (2017) Adsorption of trace thorium (IV) from aqueous solution by mono-modified β-cyclodextrin polyrotaxane using response surface methodology (RSM). J Radioanal Nucl Chem 314:1607–1618

    Article  CAS  Google Scholar 

  13. Uddin MK (2017) A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem Eng J 308:438–462

    Article  CAS  Google Scholar 

  14. Fu Y, Huang Y, Hu J, Zhang Z (2018) Preparation of chitosan/amine modified diatomite composites and adsorption properties of Hg(II) ions. Water Sci Technol 77:1363–1371

    Article  Google Scholar 

  15. Tournassat C, Tinnacher RM, Grangeon S, Davis JA (2018) Modeling uranium (VI) adsorption onto montmorillonite under varying carbonate concentrations: a surface complexation model accounting for the spillover effect on surface potential. Geochim Cosmochim Acta 220:291–308

    Article  CAS  Google Scholar 

  16. Fu H, Li X, Wang J, Lin P, Chen C, Zhang X, Suffet IH (2017) Activated carbon adsorption of quinolone antibiotics in water: performance, mechanism, and modelling. J Environ Sci 56:145–152

    Article  Google Scholar 

  17. Yeom C, Kim Y (2018) Mesoporous alumina with high capacity for carbon monoxide adsorption. Korean J Chem Eng 35:587–593

    Article  CAS  Google Scholar 

  18. Kent DB, Kastner M (1985) Mg removal in the system Mg-amorphous SiO2–H2O by adsorption and Mg-hydroxy silicate precipitation. Geochim Cosmochim Acta 49:1123–1136

    Article  CAS  Google Scholar 

  19. Kim YD, Wei T, Wendt S, Goodman DW (2003) Ag adsorption on various silica thin films. Langmuir 19:7929–7932

    Article  CAS  Google Scholar 

  20. Wang H, Chai Z, Wang D (2015) Adsorption of uranylonhydroxylated α-SiO2 (001):a first-principle study. Dalton Trans 44:1646–1654

    Article  CAS  Google Scholar 

  21. Gage RA, Currie EPK, Cohen Stuart MA (2001) Adsorption of nano colloidal SiO2 particles on PEO brushes. Macromolecules 34:5078–5080

    Article  CAS  Google Scholar 

  22. Shweta S, Anushree M, Santosh S (2009) Application of response surface methodology (RSM) for optimization of nutrient supplementation for Cr(VI) removal by Aspergillus lentulus AML05. J Hazard Mater 164:1198–1204

    Article  Google Scholar 

  23. Julin C, Yunhai W, Yanping J, Palizhati Y, Wenfu H (2014) Response surface methodology approach for optimization of the removal of chromium (VI) by NH2-MCM-41. J Taiwan Inst Chem Eng 45:860–868

    Article  Google Scholar 

  24. Fu L, Zhang L, Wang S, Peng J, Zhang G (2017) Selective adsorption of Ag+ by silica nanoparticles modified with 3-amino-5-mercapto-1,2,4-triazole from aqueous solutions. J Mol Liq 241:292–300

    Article  CAS  Google Scholar 

  25. Zhang L, Zhang G, Wang S, Peng J, Cui W (2017) Sulfoethyl functionalized silica nanoparticle as an adsorbent to selectively adsorb silver ions from aqueous solutions. J Taiwan Inst Chem Eng 71:330–337

    Article  CAS  Google Scholar 

  26. Hughesa DL, Afsar A, Harwood LM, Jiang T, Laventine DM, Shaw LJ, Hodson ME (2017) Adsorption of Pb and Zn from binary metal solutions and in the presence of dissolved organic carbon by DTPA-functionalised, silica-coated magnetic nanoparticles. Chemosphere 183:519–527

    Article  Google Scholar 

  27. Wu Y, Lee CP, Mimura H, Zhang X, Wei Y (2018) Stable solidification of silica-based ammonium molybdophosphate by allophane: application to treatment of radioactive cesium in secondary solid wastes generated from Fukushima. J Hazard Mater 341:46–54

    Article  Google Scholar 

  28. Guo G, Yuanlai X, Xinxin Y, Fen W, Fang Z, Junxia Y, Ruan C (2017) Effect of HNO3 concentration on a novel silica-based adsorbent for separating Pd(II) from simulated high level liquid waste. Sci Rep UK 7:11290

    Article  Google Scholar 

  29. Wu Y, Zhang XX, Wei YZ, Mimura H (2017) Development of adsorption and solidification process for decontamination of Cs-contaminated radioactive water in Fukushima through silica-based AMP hybrid adsorbent. Sep Purif Technol 181:76–84

    Article  CAS  Google Scholar 

  30. Sheng G, Hu B (2013) Role of solution chemistry on the trapping of radionuclide Th(IV) using titanate nanotubes as an efficient adsorbent. J Radioanal Nucl Chem 298:455464

    Article  Google Scholar 

  31. Metzger AE, Haines EL, Parker RE, Radocinski RG (1977) Thorium concentrations in the lunar surface. I—regional values and crustal content. In: Proceedings lunar and planetary science conference, vol 1 (A78-41551 18-91). Pergamon Press, New York, p 949

  32. Hollriegl V, Greiter M, Giussani A, Gerstmann U, Michalke B, Roth P, Oeh U (2007) Observation of changes in urinary excretion of thorium in humans following ingestion of a therapeutic soil. J Environ Radioact 95:149–160

    Article  CAS  Google Scholar 

  33. Kaynar UH, Sabikoglu I, Kaynar SC, Eral M (2015) Removal of thorium (IV) ions from aqueous solution by a novel nanoporous ZnO: isotherms, kinetic and thermodynamic studies. J Environ Radioact 150:145–151

    Article  CAS  Google Scholar 

  34. Kaynar UH, Çınar S, Cam Kaynar S, Ayvacıklı M, Aydemir T (2018) Modelling and optimization of uranium (VI) ions adsorption onto nano-ZnO/chitosan bio-composite beads with response surface methodology (RSM). J Polym Environ 26:2300–2310

    Article  CAS  Google Scholar 

  35. Pamukoglu MY, Kirkan B, Senyurt M (2017) Removal of thorium (IV) from aqueous solution by biosorption onto modified powdered waste sludge: experimental design approach. J Radioanal Nucl Chem 314:343–352

    Article  CAS  Google Scholar 

  36. Guerra DL, Viana RR, Airoldi C (2009) Adsorption of thorium cation on modified clays MTTZ derivative. J Hazard Mater 168:1504–1511

    Article  CAS  Google Scholar 

  37. Ilaiyaraja P, Deb AKS, Sivasubramanian Ponraju KD, Venkatraman B (2013) Removal of thorium from aqueous solution by adsorption using PAMAM dendron-functionalized styrene divinyl benzene. J Radioanal Nucl Chem 297:59–69

    Article  CAS  Google Scholar 

  38. Dev K, Pathak R, Rao GN (1999) Sorption behaviour of lanthanum (III), neodymium (III), terbium (III), thorium (IV) and uranium (VI) on Amberlite XAD-4 resin functionalized with bicine ligands. Talanta 48:579–584

    Article  CAS  Google Scholar 

  39. Esen EK, Donat R (2017) Removal of thorium (IV) from aqueous solutions by natural sepiolite. Radiochim Acta 105(3):187–196

    Google Scholar 

  40. Baybaş D, Ulusoy U (2011) The use of polyacrylamide–aluminosilicate composites for thorium adsorption. Appl Clay Sci 51:138–146

    Article  Google Scholar 

  41. Karimi M, Milani SA, Abolgashemi H (2016) Kinetic and isotherm analyses for thorium (IV) adsorptive removal from aqueous solutions by modified magnetite nanoparticle using response surface methodology (RSM). J Nucl Mater 479:174–183

    Article  CAS  Google Scholar 

  42. Qi C, Liu H, Deng S, Yang A, Li Z (2018) A modeling study by response surface methodology (RSM) on Th(IV) adsorption optimization using a sulfated β-cyclodextrin inclusion complex. Res Chem Intermed 44:2889–2911

    Article  CAS  Google Scholar 

  43. Song X, Wang Y, Cai J (2013) Sorption of Th(IV) from aqueous solution to GMZ bentonite: effect of pH, ionic strength, fulvic acid and electrolyte ions. J Radioanal Nucl Chem 295:991–1000

    Article  CAS  Google Scholar 

  44. Yousefia SR, Ahmadib SJ, Shemirania F, Jamalic MR, Salavati-Niasari M (2009) Simultaneous extraction and preconcentration of uranium and thorium in aqueous samples by new modified mesoporous silica prior to inductively coupled plasma optical emission spectrometry determination. Talanta 80:212–217

    Article  Google Scholar 

  45. Liao X, Li L, Shi B (2004) Adsorption recovery of thorium (IV) by Myrica ruba tannin and larch tannin immobilized onto collagen fibres. J Radioanal Nucl Chem 260:619–625

    Article  CAS  Google Scholar 

  46. Conn AR, Gould NIM, Toint PL (1988) Global convergence of a class of trust region algorithms for optimization with simple bounds. SIAM J Numer Anal 25:433–464

    Article  Google Scholar 

  47. Gok C, Aytas S (2013) Recovery of thorium by high-capacity biopolymeric sorbent. Sep Sci Technol 48:2115–2124

    Article  CAS  Google Scholar 

  48. Yao W, Guangsheng G, Fei W, Jun W (2002) Fluidization and agglomerate structure of SiO2 nanoparticles. Powder Technol 124:152–159

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İsrafil Şabikoğlu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaynar, U.H., Şabikoğlu, İ. Adsorption of thorium (IV) by amorphous silica; response surface modelling and optimization. J Radioanal Nucl Chem 318, 823–834 (2018). https://doi.org/10.1007/s10967-018-6044-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6044-5

Keywords

Navigation