Adsorption of U(IV) by several geomaterials: kinetic, adsorbent dosage and thermodynamic

Article
  • 18 Downloads

Abstract

The behavior of U(IV) in the presence of several geomaterials (inorganic components of soils from an oyamel forest IMH(OF) and a semiarid zone IM(SZ), and two kinds of sands AS, AW) was studied. Kinetic data were best adjusted to the pseudo-second-order model. The order of the adsorption capacity was: IMH(OF) ≫ IM(SZ) > AS ≈ AW. The adsorption efficiencies decrease as the adsorbent dosage increases (0.01–0.125 g) for all materials and do not depend on the concentrations of sodium chloride from 0.035 to 0.1 M. Thermodynamic parameters indicate that the adsorption processes is exothermic.

Keywords

Uranium(IV) Adsorption Oyamel forest Semiarid zone Sands 

References

  1. 1.
    Zhou P, Gu B (2005) Extraction of oxidized and reduced forms of uranium from contaminated soils: effects of carbonate concentration and pH. Environ Sc Technol 39:4435–4440CrossRefGoogle Scholar
  2. 2.
    Ragnarsdottir KV, Charlet L (2000) Environmental mineralogy: microbial interactions, anthropogenic influences, contaminated land and waste management. In: Cotter-Howells JD, Campbell LS, Valsami-Jones E, Batchelde M (eds) Uranium behaviour in natural environments. Mineralogical Society, London, pp 245–289Google Scholar
  3. 3.
    Huang W, Cheng W, Nie X, Dong F, Ding C, Liu M, Alharbi NS (2017) Microscopic and spectroscopic insights into uranium phosphate mineral precipitated by Bacillus mucilaginosus. ACS Earth Space Chem 1(8):483–492CrossRefGoogle Scholar
  4. 4.
    Ding C, Cheng W, Nie X, Yi F (2017) Synergistic mechanism of U(VI) sequestration by magnetite–graphene oxide composites: evidence from spectroscopic and theoretical calculation. Chem Eng J 324:113–121CrossRefGoogle Scholar
  5. 5.
    Yang C, Niu D, Zhong Y, Li L, Lv H, Liu Y (2018) Adsorption of uranium by hydrous manganese dioxide from aqueous solution. J Radioanal Nucl Chem 315(3):533–542CrossRefGoogle Scholar
  6. 6.
    Rout S, Ravi PM, Kumar A, Tripathi RM (2017) Spectroscopic investigation of uranium sorption on soil surface using X-ray photoelectron spectroscopy. J Radioanal Nucl Chem 313(3):565–570CrossRefGoogle Scholar
  7. 7.
    Bone SE, Dynes JJ, Cliff J, Bargar JR (2017) Uranium(IV) adsorption by natural organic matter in anoxic sediments. Proc Natl Acad Sci USA 114:711–716CrossRefGoogle Scholar
  8. 8.
    Grenthe I, Fuger J, Konings RJM, Lemire RJ, Muller AB, Cregu CN-T, Wanner H (1992) Chemical thermodynamics of uranium, vol 1. North Holland/Elsevier, AmsterdamGoogle Scholar
  9. 9.
    Rai D, Felmy AR, Ryan JL (1990) Uranium(IV) hydrolysis constants and solubility product of UO2·xH2O (am). Inorg Chem 29(2):260–264CrossRefGoogle Scholar
  10. 10.
    Yajima T, Kawamura Y, Ueta S (1994) Uranium(IV) solubility and hydrolysis constants under reduced conditions. MRS Online Proceedings Library Archive 353.  https://doi.org/10.1557/PROC-353-1137
  11. 11.
    Mibus J, Sachs S, Pfingsten W, Nebelung C, Bernhard G (2007) Migration of uranium(IV)/(VI) in the presence of humic acids in quartz sand: a laboratory column study. J Contam Hydrol 89:199–217CrossRefGoogle Scholar
  12. 12.
    Jiménez-Reyes M, Solache-Ríos M (2014) Chemical behavior of lanthanum in the presence of soils components: sorption and humate complexes. Water Air Soil Pollut 225:2213–2226CrossRefGoogle Scholar
  13. 13.
    Artinger R, Rabung T, Kim JI, Sachs S, Schmeide K, Heise KH, Berhard G, Nitsche H (2002) Humic colloids-borne migration of uranium in sand columns. J Contam Hydrol 58:1–12CrossRefGoogle Scholar
  14. 14.
    Kamaraj K, Vasudevan S (2016) Facile one-pot synthesis of nano-zinc hydroxide by electro-dissolution of zinc as a sacrificial anode and the application for adsorption of Th4+, U4+ and Ce4+ from aqueous solutions. Res Chem Intermed 42:4077–4095CrossRefGoogle Scholar
  15. 15.
    Choppin G, Jensen M (2006) Actinide in solution: complexation and kinetics. In: Morss L, Edelstein N, Fuger J (eds) The chemistry of the actinide and transactinide elements. Springer, Dordrecht, pp 2524–2621CrossRefGoogle Scholar
  16. 16.
    Monji AB, Ghoulipour V, Mallah MH (2016) Selective sorption of uranium(IV) from hydrochloric acid media by agro-industrial byproducts. Ann Nucl Energy 97:115–121CrossRefGoogle Scholar
  17. 17.
    Jiménez-Reyes M, Solache-Ríos M (2016) Chemical behavior of cobalt and cesium in the presence of inorganic components of a semiarid soil using water of nuclear purity. Process Saf Environ Prot 102:288–293CrossRefGoogle Scholar
  18. 18.
    Olguín MT, Jiménez-Reyes M, Fernández-Valverde SM (1990) Estabilidad de cloruros de uranio en soluciones acuosas de HCl y en disolventes orgánicos. Rev Soc Quím de Méx 34(3):99–105Google Scholar
  19. 19.
    Molina Morales I, Jiménez-Reyes M (1992) Estudio de la extracción de tetracloruro de uranio con disolventes para su aplicación en un prototipo de columna pulsada. Rev Soc Quím de Méx 36(4):168–176Google Scholar
  20. 20.
    Fernández Valverde S, Iturbe JL, Jiménez-Reyes M, Monnin M (1995) Isotope exchange and separation factor of 238U/235U for the system U(III)/U(IV) in aqueous/organic phases. J Radioanal Nucl Chem Lett 199(6):499–505CrossRefGoogle Scholar
  21. 21.
    Solache-Ríos M, Olguín MT, Martínez-Miranda V, Ramírez-García J, Zárate-Montoya N (2015) Removal behavior of cobalt from aqueous solutions by a sodium modified zeolitic tuff. Water Air Soil Pollut 226:1–8CrossRefGoogle Scholar
  22. 22.
    Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465CrossRefGoogle Scholar
  23. 23.
    Prikryl JD, Jain A, Turner DR, Pabalan RT (2001) Uranium VI sorption behavior on silicate mineral mixtures. J Contam Hydrol 47:241–253CrossRefGoogle Scholar
  24. 24.
    Bradbury MH, Baeyens B (2005) Modelling the sorption of Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Eu(III), Am(III), Sn(IV), Th(IV), Np(V) and U(VI) on montmorillonite: linear free energy relationships and estimates of surface binding constants for some selected heavy metals and actinides. Geochim Cosmochim Acta 69:875–892CrossRefGoogle Scholar
  25. 25.
    Sparks DL (1995) Environmental soil chemistry. Academic, San DiegoGoogle Scholar
  26. 26.
    Crancon P, van der Lee J (2003) Speciation and mobility of uranium(VI) in humic-containing soils. Radiochim Acta 91:673–679CrossRefGoogle Scholar
  27. 27.
    Puigdomenech I (2010) Program MEDUSA (make equilibrium diagrams using sophisticated algorithms). Royal Institute of Technology, Inorganic Chemistry, StockholmGoogle Scholar
  28. 28.
    Saini AS, Melo JS (2013) Biosorption of uranium by melanin: kinetic, equilibrium and thermodynamic studies. Bioresour Technol 149:155–162CrossRefGoogle Scholar
  29. 29.
    Roulia M, Vassiliadis AA (2008) Sorption characterization of a cationic dye retained by clays and perlite. Microporous Mesoporous Mater 116:732–740CrossRefGoogle Scholar
  30. 30.
    Chang R, Goldsby K (2013) Chemistry, 11th edn. McGraw Hill, New YorkGoogle Scholar
  31. 31.
    Mellah A, Chegrouche S, Barkat M (2006) The removal of uranium(VI) from aqueous solutions onto activated carbon: kinetic and thermodynamic investigations. J Colloid Interface Sci 296:434–441CrossRefGoogle Scholar
  32. 32.
    Jiménez-Reyes M, Solache-Ríos M (2017) Unpublished resultsGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Departamento de QuímicaInstituto Nacional de Investigaciones NuclearesOcoyoacac, Estado de MéxicoMexico

Personalised recommendations