Complexation of U(VI) with diphenyldithiophosphinic acid: spectroscopy, structure and DFT calculations

  • Dechao Meng
  • Ning Pu
  • Lei Mei
  • Taoxiang Sun
  • Lei Xu
  • Weiqun Shi
  • Jing Chen
  • Chao Xu


The complexation of U(VI) with diphenyldithiophosphinic acid (denoted as HL) in acetonitrile was studied by UV–Vis, FT-IR, crystallography and DFT calculations. UV–Vis absorption spectrophotometry implies that three successive complexes, UO2L+, UO2L2, UO2L3, form in the solution. Significant ligand to metal charge transfer occurs from soft atom S to U(VI) in all the three complexes. A crystal of UO2L2 complex was successfully synthesized from the solution. In the crystal both the two ligands coordinate to U(VI) in bidentate form. DFT calculations confirm the formation of UO2L3 complex and help illustrate the structures of all the U(VI) species in the solution.


Uranyl Diphenyldithiophosphinate Complexation Coordination mode 



This work was supported by National Natural Science Foundation of China (Grant Nos. 91426302, 21571114, 51425403) and the Science Challenge Project (JCKY2016212A504). The calculations were performed using supercomputers at Tsinghua National Laboratory for Information Science and Technology.

Supplementary material

10967_2018_5844_MOESM1_ESM.docx (516 kb)
Supplementary material 1 (DOCX 515 kb)


  1. 1.
    Bart SC, Meyer K (2008) Highlights in uranium coordination chemistry. Struct Bond 127:119–176CrossRefGoogle Scholar
  2. 2.
    Sessler JL, Melfi PJ, Pantos GD (2006) Uranium complexes of multidentate N-donor ligands. Coordin Chem Rev 250:816–843CrossRefGoogle Scholar
  3. 3.
    Fortier S, Hayton TW (2010) Oxo ligand functionalization in the uranyl ion (UO2 2+). Coordin Chem Rev 254:197–214CrossRefGoogle Scholar
  4. 4.
    Priya S, Sengupta A, Jayabun S (2016) Understanding the extraction/complexation of uranium using structurally modified sulphoxides in room temperature ionic liquid: speciation, kinetics, radiolytic stability, stripping and luminescence investigation. J Radioannal Nucl Chem 310:1049–1059CrossRefGoogle Scholar
  5. 5.
    Singh M, Sengupta A, Murali MS, Thulasidas SK, Kadam RM (2016) Selective separation of uranium from nuclear waste solution by bis(2,4,4-trimethylpentyl)phosphinic acid in ionic liquid and molecular diluents: a comparative study. J Radioannal Nucl Chem 309:1199–1208CrossRefGoogle Scholar
  6. 6.
    Adya VC, Sengupta A, Dhawale BA, Rajeswari B, Thulasidas SK, Godbole SV (2012) Recovery of americium from analytical solid waste containing large amounts of uranium, plutonium and silver. J Radioannal Nucl Chem 291:843–848CrossRefGoogle Scholar
  7. 7.
    Behrle AC, Barnes CL, Kaltsoyannis N, Walensky JR (2013) Systematic investigation of thorium(IV)-and uranium(IV)-ligand bonding in dithiophosphonate, thioselenophosphinate, and diselenophosphonate complexes. Inorg Chem 52:10623–10631CrossRefGoogle Scholar
  8. 8.
    Narducci AA, Ibers JA (1998) Ternary and quaternary uranium and thorium chalcogenides. Chem Mater 10:2811–2823CrossRefGoogle Scholar
  9. 9.
    Ephritikhine M (2016) Molecular actinide compounds with soft chalcogen ligands. Coordin Chem Rev 319:35–62CrossRefGoogle Scholar
  10. 10.
    Chang YP, Levason W, Reid G (2016) Developments in the chemistry of the hard early metals (Groups 1–6) with thioether, selenoether and telluroether ligands. Dalton Trans 45:18393–18416CrossRefGoogle Scholar
  11. 11.
    Zhu Y, Chen J, Jiao R (1996) Extraction of Am(III) and Eu(III) from nitrate solution with purified Cyanex 301. Solvent Extr Ion Exch 14:61–68CrossRefGoogle Scholar
  12. 12.
    Chen J, Zhu Y, Jiao R (1996) The separation of Am from lanthanides by purified Cyanex 301 extraction. Sep Sci Technol 31:2723–2731CrossRefGoogle Scholar
  13. 13.
    Peterman DR, Martin LR, Klaehn JR, Harrup MK, Greenhalgh MR, Luther TA (2009) Selective separation of minor actinides and lanthanides using aromatic dithiophosphinic and phosphinic acid derivatives. J Radioannal Nucl Chem 282:527–531CrossRefGoogle Scholar
  14. 14.
    Peterman DR, Greenhalgh MR, Tillotson RD, Klaehn JR, Harrup MK, Luther TA, Law JD (2010) Selective extraction of minor actinides from acidic media using symmetric and asymmetric dithiophosphinic acids. Sep Sci Technol 45:1711–1717CrossRefGoogle Scholar
  15. 15.
    Modolo G, Nabet S (2005) Thermodynamic study on the synergistic mixture of bis(chlorophenyl)dithiophosphinic acid and tris(2-ethylhexyl)phosphate for separation of actinides(III) from lanthanides(III). Solvent Extr Ion Exch 23:359–373CrossRefGoogle Scholar
  16. 16.
    Klaehn John R, Peterman Dean R, Harrup Mason K, Tillotson Richard D, Luther Thomas A (2008) Synthesis of symmetric dithiophosphinic acids for “minor actinide” extraction. Inorg Chim Acta 361:2522–2532CrossRefGoogle Scholar
  17. 17.
    Lan J, Shi W, Yuan L, Li J, Zhao Y, Chai Z (2012) Recent advances in computational modeling and simulations on the An(III)/Ln(III) separation process. Coordin Chem Rev 256:1406–1417CrossRefGoogle Scholar
  18. 18.
    Jensen MP, Bond AH (2002) Comparison of covalency in the complexes of trivalent actinide and lanthanide cations. J Am Chem Soc 124:9870–9877CrossRefGoogle Scholar
  19. 19.
    El-Hefny NE, Daoud JA (2004) Extraction and separation of thorium(IV) and praseodymium (III) with Cyanex 301 and Cyanex 302 from nitrate medium. J Radioannal Nucl Chem 261:357–363CrossRefGoogle Scholar
  20. 20.
    El-Dessouky S (2004) Mechanism of U (VI) extraction by Cyanex 301 in kerosene from nitrate medium. J Radioannal Nucl Chem 260:613–617CrossRefGoogle Scholar
  21. 21.
    Curtui M, Haiduc I, Ghizdavu L (2001) Separation of uranium (VI) by extraction with dibutylditiophosphoric acid. J Radioannal Nucl Chem 250:359–362CrossRefGoogle Scholar
  22. 22.
    Rout K, Mishra P, Charkavortty V, Dash K (1994) Liquid-liquid extraction of uranium (VI) by Cyanex 301/Alamine 308 and their mixtures with TBP/DDSO. J Radioannal Nucl Chem 181:3–10CrossRefGoogle Scholar
  23. 23.
    Beltrami D, Chagnes A, Haddad M, Laureano H, Mokhtari H, Courtaud B, Jugé S, Cote G (2013) Development of new cationic exchangers for the recovery of uranium (VI) from concentrated phosphoric acid. Sep Sci Technol 48:480–486CrossRefGoogle Scholar
  24. 24.
    Fitoussi R, Musikas C (2006) Uranium(VI) and ruthenium extraction by dialkyldithio-phosphoric acids. Sep Sci Technol 15:845–860CrossRefGoogle Scholar
  25. 25.
    Pinkerton AA, Ahlers FP, Greiwing HF, Krebs B (1997) Dithiophosphinate complexes of the UO2 2+ ion containing a coordinated water molecule-solid state structures and stereochemical rigidity in solution. Inorg Chim Acta 257:77–81CrossRefGoogle Scholar
  26. 26.
    Storey AE, Zonnevijlle F, Pinkerton AA, Schwarzenbach D (1983) Dithiophosphinate complexes of the actinides. II. Preparation and characterisation of the compounds UO2(S2PR2)2 · R′OH,[Et4N][UO2(S2PR2)2Cl] and UO2(S2PR2) 2 · Me3PO. The crystal structures of UO2(S2PR2)2 · EtOH, R = Ph and C6H11,[Et4 N][UO2(S2PR2)2Cl], R = Me and Ph, and UO2(S2PMe2)2 · Me3PO. Inorg Chim Acta 75:103–113CrossRefGoogle Scholar
  27. 27.
    Haiduc I, Curtui M (1976) ChemInform abstract: preparation of bis(dialkylphosphorodithioato)dioxo(triphenylphosphine oxide) uranium(VI) complexes. Syn React Inorg Met 6:125–132CrossRefGoogle Scholar
  28. 28.
    Higgins WA, Vogel PW, Craig WG (1955) Aromatic phosphinic acids and derivatives. I. Diphenylphosphinodithoic acid and its derivatives. J Am Chem Soc 77:1864–1866CrossRefGoogle Scholar
  29. 29.
    Nockemann P, Servaes K, Van Deun R, Van Hecke K, Van Meervelt L, Binnemans K, Görller-Walrand C (2007) Speciation of uranyl complexes in ionic liquids by optical spectroscopy. Inorg Chem 46:11335–11344CrossRefGoogle Scholar
  30. 30.
    Sengupta A, Sankhe RH, Natarajan V (2015) Rapid and non-destructive determination of uranium and thorium by gamma spectrometry and a comparison with ICP-AES. J Radioannal Nucl Chem 306:1–6CrossRefGoogle Scholar
  31. 31.
    Sengupta A, Adya VC, Seshagiri TK, Godbole SV (2013) Exploration of CCD-based ICP-AES for studying spectral interferences of uranium on other analytes. Atom Spectrosc 34:53–59Google Scholar
  32. 32.
    Gans P, Sabatini A, Vacca A (1996) Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 43:1739–1753CrossRefGoogle Scholar
  33. 33.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  34. 34.
    Di Pietro P, Kerridge A (2017) Ligand size dependence of U-N and U-O bond character in a series of uranyl hexaphyrin complexes: quantum chemical simulation and density based analysis. Phys Chem Chem Phys 19:7546–7559CrossRefGoogle Scholar
  35. 35.
    Hu SX, Gibson JK, Li WL, Van Stipdonk MJ, Martens J, Berden G, Redlich B, Oomens J, Li J (2016) Electronic structure and characterization of a uranyl di-15-crown-5 complex with an unprecedented sandwich structure. Chem Commun 52:12761–12764CrossRefGoogle Scholar
  36. 36.
    Hu SX, Li WL, Dong L, Gibson JK, Li J (2017) Crown ether complexes of actinyls: a computational assessment of AnO2(15-crown-5)2+ (An = U, Np. Pu, Am, Cm). Dalton Trans 46:12354–12363CrossRefGoogle Scholar
  37. 37.
    Lenthe EV, Baerends EJ, Snijders JG (1993) Relativistic regular two-component Hamiltonians. J Chem Phys 99:4597–4610CrossRefGoogle Scholar
  38. 38.
    Lenthe EV, Baerends EJ, Snijders JG (1994) Relativistic total energy using regular approximations. J Chem Phys 101:9783–9792CrossRefGoogle Scholar
  39. 39.
    Lenthe EV, Baerends EJ (2003) Optimized Slater-type basis sets for the elements 1–118. J Comput Chem 24:1142–1156CrossRefGoogle Scholar
  40. 40.
    Sengupta A, Murali MS, Mohapatra PK (2013) Role of alkyl substituent in room temperature ionic liquid on the electrochemical behavior of uranium ion and its local environment. J Radioannal Nucl Chem 298:209–217CrossRefGoogle Scholar
  41. 41.
    Cattalini L, Croatto U, Degetto S, Tondello E (1971) Uranyl chelate complexes. Inorg Chim Acta Rev 5:19–43CrossRefGoogle Scholar
  42. 42.
    Quiles F, Burneau A (1998) Infrared and Raman spectroscopic study of uranyl complexes: hydroxide and acetate derivatives in aqueous solution. Vib Spectrosc 18:61–75CrossRefGoogle Scholar
  43. 43.
    Casas JS, Sanchez A, Sordo J, Vazquez-Lopez EM, Castellano EE, Zukerman-Schpector J (1992) Dimethylthallium (III) compounds of diphenyl dithiophosphinate. Crystal and molecular structure of [TlMe2(S2PPh2)] and [Et4N][TlMe2(S2PPh2)2]. Polyhedron 11:2889–2896CrossRefGoogle Scholar
  44. 44.
    Casas JS, Castellano EE, Castiñeiras A, Sánchez A, Sordo J, Vázquez-López EM, Zukerman-Schpector J (1995) Protodemetallation reactions of some diphenylthallium (III) compounds with dicyclohexyldithiophosphinic acid. Crystal and molecular structures of [TlPh2{S2P(C6H11)2}],[TlPh{S2P(C6H11)2}2] and [Tl{S2P(C6H11)2} 3]·CHCl3. J Chem Soc Dalton 9:1403–1409CrossRefGoogle Scholar
  45. 45.
    Sarsfield MJ, Helliwell M, Raftery J (2004) Distorted equatorial coordination environments and weakening of U=O bonds in uranyl complexes containing NCN and NPN ligands. Inorg Chem 43:3170–3179CrossRefGoogle Scholar
  46. 46.
    Sarsfield MJ, Helliwell M (2004) Extending the chemistry of the uranyl ion: lewis acid coordination to a U=O oxygen. J Am Chem Soc 126:1036–1037CrossRefGoogle Scholar
  47. 47.
    Groenewold GS, Gianotto AK, Cossel KC, Van Stipdonk MJ, Moore DT, Polfer N, Oomens J, de Jong WA, Visscher L (2006) Vibrational spectroscopy of mass-selected [UO2(ligand)n]2+ complexes in the gas phase: comparison with theory. J Am Chem Soc 128:4802–4813CrossRefGoogle Scholar
  48. 48.
    Grabowski ZR, Rotkiewicz K, Rettig W (2003) Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chem Rev 103:3899–4032CrossRefGoogle Scholar
  49. 49.
    Sun X, Kolling DR, Mazagri H, Karawan B, Pierron C (2015) Investigation of charge-transfer absorptions in the uranyl UO2 2+(VI) ion and related chemical reduction of UO2 2+(VI) to UO2 +(V) by UV-Vis and electron paramagnetic resonance spectroscopies. Inorg Chim Acta 435:117–124CrossRefGoogle Scholar
  50. 50.
    Denning RG (1992) Electronic structure and bonding in actinyl ions. Struct Bond 50:121–171Google Scholar
  51. 51.
    Zhang Z, Pitzer RM (1999) Application of relativistic quantum chemistry to the electronic energy levels of the uranyl ion. J Phys Chem A 103:6880–6886CrossRefGoogle Scholar
  52. 52.
    Matsika S, Zhang Z, Brozell SR, Blaudeau JP, Wang Q, Pitzer RM (2001) Electronic structure and spectra of actinyl ions. J Phys Chem A 105:3825–3828CrossRefGoogle Scholar
  53. 53.
    Denning RG, Snellgrove TR, Woodwark DR (1976) Electronic structure of uranyl-ion. 1. Electronic spectrum of Cs2UO2Cl4. Mol Phys 32:419–442CrossRefGoogle Scholar
  54. 54.
    Denning RG (2007) Electronic structure and bonding in actinyl ions and their analogs. J Phys Chem A 111:4125–4143CrossRefGoogle Scholar
  55. 55.
    Rabinowitch E, Belford RL (1964) Spectroscopy and photochemistry of uranyl compounds. Springer, BerlinGoogle Scholar
  56. 56.
    Lever AB (1984) In: Lever AB (ed) Inorganic electronic spectroscopy. Elsevier, OxideGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Collaborative Innovation Center of Advanced Nuclear Energy TechnologyInstitute of Nuclear and New Energy Technology, Tsinghua UniversityBeijingChina
  2. 2.Key Lab of Radioactive Waste TreatmentTsinghua UniversityBeijingChina
  3. 3.Laboratory of Nuclear Energy Chemistry, Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations