Advertisement

Metal concentrations and radioactivity in sediments at the northern coastal zone of Ikaria Island, eastern Mediterranean, Greece

  • Fotios Fouskas
  • Athanasios Godelitsas
  • Ariadne Argyraki
  • Filothei K. Pappa
  • Christos Tsabaris
Article

Abstract

Heavy metals and radionuclides were investigated in the northern coastal zone of Ikaria Island. The collected sediment samples are sandy and they contain distinct heavy metal- and actinide-hosting minerals. All samples exhibit low U and Th content relative to granitic rocks of Aegean islands. The enrichment factor indicates an anthropogenic enrichment in As and Pb due to boat pigments. The radioactivity is mainly attributed to 40K (up to 1480 Bq kg−1) and 232Th radionuclide series. The natural radioactivity of the northern coastal zone is lower compared to that of the southern coast where renowned thermal springs are located.

Keywords

Coastal sediments Heavy metals Radionuclides Mediterranean Arsenic Lead 

Notes

Acknowledgements

We would like to thank the Marine Conservation Research Institute “Archipelagos” (NGO), based on Samos and Ikaria islands, for fruitful discussions on the subject of the present study.

References

  1. 1.
    Trabidou G, Florou H, Angelopoulos A, Sakelliou L (1996) Environmental study of the radioactivity of the spas in the island of Ikaria. Radiat Prot Dosim 63:63–67CrossRefGoogle Scholar
  2. 2.
    Trabidou G, Florou H (2005) Radiological impact in an area of elevated natural radioactivity background: the case of the island of Ikaria-Aegean Sea, Greece. Int Cong Ser 1276:390–391CrossRefGoogle Scholar
  3. 3.
    Florou H, Kehagia K, Savidou A, Trabidou G (2006) The radiological evaluation of uranium, radium and radon in metallic and thermo-metallic springs in Ikaria Island, the eastern Aegean Sea, Greece. Radioact Environ 8:235–242CrossRefGoogle Scholar
  4. 4.
    Florou H, Trabidou G, Nicolaou G (2007) An assessment of the external radiological impact in areas of Greece with elevated natural radioactivity. J Environ Radioact 93:74–83CrossRefGoogle Scholar
  5. 5.
    Papadopoulos A, Christofides G, Koroneos A, Papadopoulou L, Papastefanou C, Stoulos S (2013) Natural radioactivity and radiation index of the major plutonic bodies in Greece. J Environ Radioact 124:227–238CrossRefGoogle Scholar
  6. 6.
    Steppan N (2003) Li, Be und B in minerallen metapelitischer gesteine: fallstudien auf der insel Ikaria, im Künischen Gebirge und den Schweizer Alpen. Dissertation, University of HeidelbergGoogle Scholar
  7. 7.
    Tzortzis M, Tsertos H, Christofides S, Christodoulides G (2003) Gamma-ray measurements of naturally occurring radioactive samples form Cyprus characteristic geological rocks. Radiat Meas 37:221–229CrossRefGoogle Scholar
  8. 8.
    Suresh G, Ramasamy V, Meenakshisundaram V, Venkatachalapathy R, Ponnusamy V (2011) Influence of mineralogical and heavy metal composition on natural radionuclide concentrations in the river sediments. Appl Radiat Isot 69:1466–1474CrossRefGoogle Scholar
  9. 9.
    Buettner D (2012) The blue zones: 9 lessons for living longer from the people who’ve lived the longest. National Geographic Books, Washington, D.C.Google Scholar
  10. 10.
    Poulain M, Herm A, Pes G (2013) The blue zones: areas of exceptional longevity around the world. Vienna Yearb Popul Res 11:87–108CrossRefGoogle Scholar
  11. 11.
    Buettner D, Skemp S (2016) Blue zones lessons from the world’s longest lived. Am J Lifestyle Med 10:318–321CrossRefGoogle Scholar
  12. 12.
    Oikonomou E, Chrysohoou C, Tsiachris D, Vogiatzi G, Gialafos E, Marinos G, Tsitsinakis G, Dimitriadis K, Tousoulis D, Pitsavos C, Stefanadis C (2011) Gender variation of exercise-induced anti-arrhythmic protection: the Ikaria study. Int J Med 104:1035–1043Google Scholar
  13. 13.
    Chrysohoou C, Panagiotakos D, Pitsavos C, Siasos G, Oikonomou E, Varlas J, Patialakas A, Lazaros G, Psaltopoulou T, Zaromitidou M, Kourkouti P, Tousoulis D, Stefanadis C (2013) Low total testosterone levels are associated with the metabolic syndrome in elderly men: the role of body weight, lipids, insulin resistance, and inflammation; the Ikaria study. Rev Diabet Stud 10:27–38CrossRefGoogle Scholar
  14. 14.
    Pietri P, Vlachopoulos C, Crysohoou C, Lazaros G, Masoura K, Ioakeimidis N, Tousoulis D, Stefanadis C (2015) Deceleration of age-related aortic stiffening in a population with high longevity rates: the Ikaria study. J Am Coll Cardiol 66:1842–1848CrossRefGoogle Scholar
  15. 15.
    Papanikolaou DJ (1978) Contribution to the geology of Ikaria Island, Aegean Sea. Ann Geol Pays Hellen 29:1–28Google Scholar
  16. 16.
    Baltatzis E, Kostopoulos D, Godelitsas A, Zachariadis P, Papanikolaou D (1999) Pliocene tourmaline rhyolite dykes from Ikaria Island in the Aegean back-arc region: geodynamic implications. Geodin Acta 22:189–199CrossRefGoogle Scholar
  17. 17.
    Photiades A (2002) The ophiolitic molasse unit of Ikaria Island (Greece). Turk J Earth Sci 11:27–38Google Scholar
  18. 18.
    ASTM D2487 (1994) Standard classification of soils for engineering purposes (Unified Soil classification system). ASTM, West Conshohocken, PAGoogle Scholar
  19. 19.
    Kalfas CA, Axiotis M, Tsabaris C (2016) SPECTRW: a software package for nuclear and atomic spectroscopy. Nucl Instrum Methods Phys Res A 116:22–33Google Scholar
  20. 20.
    Tsabaris C, Eleftheriou G, Kapsimalis V, Anagnostou C, Vlastou R, Durmishi C, Kedhi M, Kalfas CA (2007) Radioactivity levels of recent sediments in the Butrint Lagoon and the adjacent coast of Albania. Appl Radiat Isot 65:445–453CrossRefGoogle Scholar
  21. 21.
    Tsabaris C, Evangeliou N, Fillis-Tsirakis E, Sotiropoulou M, Patiris DL, Florou H (2012) Distribution of natural radioactivity in sediment cores from Amvrakikos Gulf (western Greece) as part of IAEA’s campaign in Adriatic and Ionian Seas. Radiat Prot Dosim 150:474–487CrossRefGoogle Scholar
  22. 22.
    Eleftheriou G, Tsabaris C, Androulakaki EG, Patiris DL, Kokkoris M, Kalfas CA, Vlastou R (2013) Radioactivity measurements in the aquatic environment using in-situ and laboratory gamma-ray spectrometry. Appl Radiat Isot 82:268–278CrossRefGoogle Scholar
  23. 23.
    Nolting RF, Ramkema A, Everaarts JM (1999) The geochemistry of Cu, Cd, Ni and Pb in sediment cores from the continental slope of the Banc d’ Arguin (Mauritania). Cont Shelf Res 19:665–691CrossRefGoogle Scholar
  24. 24.
    Szefer P, Glasby GP, Stuben D, Kusak A, Geldon J, Berner Z, Neumann T, Warzocha J (1999) Distribution of selected heavy metals and rare earth elements in surficial sediments from the Polish sector of the Vistula Lagoon. Chemosphere 39:2785–2798CrossRefGoogle Scholar
  25. 25.
    Matthai C, Birch G (2001) Detection of anthropogenic Cu, Pb and Zn in continental shelf sediments off Sydney, Australia—a new approach using normalization with cobalt. Mar Pollut Bull 42:1055–1063CrossRefGoogle Scholar
  26. 26.
    Salomons W, Forstner U (1984) Metals in the hydrocycle. Springer, BerlinCrossRefGoogle Scholar
  27. 27.
    Mohanty AK, Sengupta D, Das SK, Vijayan V, Saha SK (2004) Natural radioactivity in the newly discovered high background radiation area on the eastern coast of Orissa, India. Radiat Meas 38:153–165CrossRefGoogle Scholar
  28. 28.
    Aloupi M, Angelidis MO (2002) The significance of coarse sediments in metal pollution studies in the coastal zone. Water Air Soil Pollut 133:121–131CrossRefGoogle Scholar
  29. 29.
    Bea F, Pereira MD, Stroh A (1994) Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study). Chem Geol 117:291–312CrossRefGoogle Scholar
  30. 30.
    Bea F (1996) Residence of REE, Y, Th and U in granites and crystal protoliths; implications for the chemistry of crystal melts. J Petrol 37:521–552CrossRefGoogle Scholar
  31. 31.
    Filippidis A, Misaelides P, Clouvas A, Godelitsas A, Barbayiannis N, Anousis I (1997) Mineral, chemical and radiological investigation of a black sand at Touzla Cape, near Thessaloniki, Greece. Environ Geochem Health 19:83–88CrossRefGoogle Scholar
  32. 32.
    Myron G (2003) Igneous and metamorphic petrology, 2nd edn. Blackwell Science Ltd, OxfordGoogle Scholar
  33. 33.
    Götze J, Plötze M, Graupner T, Hallbauer DK, Bray CJ (2004) Trace element incorporation into quartz: a combined study by ICP-MS, electron spin resonance, cathodoluminescence, capillary ion analysis, and gas chromatography. Geochim Cosmochim Acta 68:3741–3759CrossRefGoogle Scholar
  34. 34.
    Trotter JA, Eggins SM (2006) Chemical systematics of conodont apatite determined by laser ablation ICPMS. Chem Geol 233:196–216CrossRefGoogle Scholar
  35. 35.
    Sawka WN, Banfield JF, Chappell BW (1986) A weathering-related origin of widespread monazite in S-type granites. Geochim Cosmochim Acta 50:171–175CrossRefGoogle Scholar
  36. 36.
    Altherr R, Siebel W (2002) I-type plutonism in a continental back-arc setting: Miocene granitoids and monzonites from the central Aegean Sea, Greece. Contrib Mineral Petrol 143:397–415CrossRefGoogle Scholar
  37. 37.
    Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry, vol 2. Elsevier, New York, pp 63–114CrossRefGoogle Scholar
  38. 38.
    Krauskopf KB, Bird DK (1994) Introduction to geochemistry, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
  39. 39.
    Rudnick RL, Gao S (2003) Composition of the continental crust. In: Rudnick RL (ed) The crust, treatise on geochemistry, vol 3. Elsevier-Pergamon, Oxford, pp 1–64Google Scholar
  40. 40.
    Bhatia MR, Taylor SR (1981) Trace element geochemistry and sedimentary provinces: a study from the Tasman geosynclines, Australia. Chem Geol 33:115–125CrossRefGoogle Scholar
  41. 41.
    Bhatia MR (1983) Plate tectonics and geochemical composition of sandstones. J Geol 91:611–627CrossRefGoogle Scholar
  42. 42.
    Bhatia MR (1985) Composition and classification of Palaeozoic flysch mudrocks of eastern Australia: implication in provenance and tectonic setting interpretation. Sediment Geol 41:249–268CrossRefGoogle Scholar
  43. 43.
    McLennan SM (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In: Lipin BR, McKay GA (eds) Geochemistry and mineralogy of rare earth elements. Rev Mineral Geochem 21:169–200Google Scholar
  44. 44.
    McLennan SM, Hemming S, McDaniel DK, Hanson GN (1993) Geochemical approaches to sedimentation, provenance and tectonics. In: Johnsson MJ, Basu A (eds) Processes controlling the composition of clastic sediments. Spec Pap Geol Soc Am 284:21–40Google Scholar
  45. 45.
    Alexander J, Bailey EH, Pickering KT (2000) Using Rare Earth Elements as provenance indicators in mudrocks from a range of tectonic settings. J Conf Abstr 5:134Google Scholar
  46. 46.
    Floyd PA, Leveridge BE (1987) Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones. J Geol Soc 144:531–542CrossRefGoogle Scholar
  47. 47.
    Prakash Babu C, Brumsack HJ, Schnetger B, Böttcher ME (2002) Barium as a productivity proxy in continental margin sediments: a study from the eastern Arabian Sea. Mar Geol 184:189–206CrossRefGoogle Scholar
  48. 48.
    Papaefthymiou H, Papadeodorou G, Moustakli A, Christodoulou D, Geraga M (2007) Natural radionuclides and 137Cs distributions and their relationship with sedimentological processes in Patras Harbour, Greece. J Environ Radioact 94:55–74CrossRefGoogle Scholar
  49. 49.
    Papatheodorou G, Papaefthymiou H, Vlachos N (2008) 137Cs and natural radionuclides in the sediments of a shallow coastal lagoon (Messolonghi Lagoon), W. Greece. In: ECORAD 2008, Bergen (Norway), pp 278–281Google Scholar
  50. 50.
    El Mamoney MH, Khater AEM (2004) Environmental characterization and radio-ecological impacts of non-nuclear industries on the Red Sea coast. J Environ Radioact 73:151–168CrossRefGoogle Scholar
  51. 51.
    Abdel-Razek YA, Bakhit AF, Nada AA (2008) Measurements of the natural radioactivity along Wadi Nugrus, Egypt. In: IX radiation physics and protection conference, Nasr city—Cairo, EgyptGoogle Scholar
  52. 52.
    Ergül HA, Belivermis M, Kilic Ö, Topcuoglu S (2013) Natural and artificial radionuclide activity concentrations in surface sediments of Izmit Bay, Turkey. J Environ Radioact 126:125–132CrossRefGoogle Scholar
  53. 53.
    Korkolu Z, Özkan N (2013) Determination of natural radioactivity levels of beach sand samples in the black sea coast of Kocaeli (Turkey). Radiat Phys Chem 88:27–31CrossRefGoogle Scholar
  54. 54.
    Özmen SF, Cesur A, Boztosun I, Yavuz M (2014) Distribution of natural and anthropogenic radionuclides in beach sand samples from Mediterranean coast of Turkey. Radiat Phys Chem 103:37–44CrossRefGoogle Scholar
  55. 55.
    Kucukomeroglu B, Karadeniz A, Damla N, Yesilkanat CM, Cevik U (2016) Radiological maps in beach sands along some coastal regions of Turkey. Mar Pollut Bull 112:255–264CrossRefGoogle Scholar
  56. 56.
    United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (2000) Sources and Effects of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation, Report to General Assembly with Scientific Annexes, United Nations, New YorkGoogle Scholar
  57. 57.
    Patra AK, Jaison TJ, Baburajan A, Hegde AG (2008) Assessment of radiological significance of naturally occurring radionuclides in soil and rock matrices around Kakrapar environment. Radiat Prot Dosim 131:487–494CrossRefGoogle Scholar
  58. 58.
    Isinkaye MO (2008) Radiometric assessment of natural radioactivity levels of bituminous soil in Agbabu, southwest Nigeria. Radiat Meas 43:125–128CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Fotios Fouskas
    • 1
    • 4
  • Athanasios Godelitsas
    • 1
  • Ariadne Argyraki
    • 1
  • Filothei K. Pappa
    • 2
    • 3
  • Christos Tsabaris
    • 2
  1. 1.Faculty of Geology and GeoenvironmentNational and Kapodistrian University of AthensAthensGreece
  2. 2.Institute of OceanographyHellenic Center for Marine ResearchAnavyssosGreece
  3. 3.Department of PhysicsNational Technical University of AthensAthensGreece
  4. 4.Department of Earth SciencesIndiana University-Purdue University IndianapolisIndianapolisUSA

Personalised recommendations