Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 316, Issue 3, pp 1253–1259 | Cite as

Constituent analysis of metal and metal oxide in reduced SIMFuel using bromine-ethyl acetate

  • Tae-Hong Park
  • Young-Hwan Cho
  • Byungman Kang
  • Jong-Goo Kim
  • Kyungwon Suh
  • Jihye Kim
  • Sang-Eun Bae
  • Jong-Yun Kim
  • Jeffrey J. Giglio
  • Matthew M. Jones
Article

Abstract

We demonstrated that bromine in ethyl acetate can selectively separate metallic contents in lanthanide metal-oxide mixtures for analysis, which had been validated for uranium. This Br2-EtOAc dissolution method was applied to determine the constituents of metal and metal oxide in SIMFuel that was electrochemically reduced from oxide fuel in the molten salt. Compared with the analysis results obtained after dissolving the fuel in an acid solution, we concluded that the Br2-EtOAc method can be applied to uranium and rare earths but not to noble metals for the reduction yield determination.

Keywords

Pyroprocessing Oxide reduction Elemental analysis ICP-AES UTEVA resin 

Notes

Acknowledgements

This work was supported by the National Research Foundation of Korea grant funded by the Korea government (No. 2017M2A8A5014710). The authors thanks to Drs. Wooshin Park and Eun-Young Choi in the Pyroprocess Technology Division, KAERI for providing reduced SIMFuel for this work.

Supplementary material

10967_2018_5841_MOESM1_ESM.docx (42 kb)
Supplementary material 1 (DOCX 42 kb)

References

  1. 1.
    Laidler JJ, Battles JE, Miller WE, Ackerman JP, Carls EL (1997) Development of pyroprocessing technology. Prog Nucl Energy 31:131–140CrossRefGoogle Scholar
  2. 2.
    Song K-C, Lee H, Hur J-M, Kim J-G, Ahn D-H, Cho Y-Z (2010) Status of pyroprocessing technology development in Korea. Nucl Eng Technol 42:131–144CrossRefGoogle Scholar
  3. 3.
    Herrmann SD, Li SX (2010) Separation and recovery of uranium metal from spent light water reactor fuel via electrolytic reduction and electrorefining. Nucl Technol 171:247–265CrossRefGoogle Scholar
  4. 4.
    Park W, Choi E-Y, Kim S-W, Jeon S-C, Cho Y-H, Hur J-M (2016) Electrolytic reduction of a simulated oxide spent fuel and the fates of representative elements in a Li2O-LiCl molten salt. J Nucl Mater 477:59–66CrossRefGoogle Scholar
  5. 5.
    Choi E-Y, Lee J, Heo DH, Lee SK, Jeon MK, Hong SS, Kim S-W, Kang HW, Jeon S-C, Hur J-M (2017) Electrolytic reduction runs of 0.6 kg scale-simulated oxide fuel in a Li2O-LiCl molten salt using metal anode shrouds. J Nucl Mater 489:1–8CrossRefGoogle Scholar
  6. 6.
    Lee M-W, Choi E-Y, Jeon S-C, Lee J, Park S-B, Paek S, Simpson MF, Jeong SM (2016) Enhanced electrochemical reduction of rare earth oxides in simulated oxide fuel via co-reduction of NiO in Li2O–LiCl salt. Electrochem Commun 72:23–26CrossRefGoogle Scholar
  7. 7.
    Liu K, Tang H-B, Pang J-W, Liu Y-L, Feng Y-X, Chai Z-F, Shi W-Q (2016) Electrochemical properties of uranium on the liquid gallium electrode in LiCl-KCl eutectic. J Electrochem Soc 163:D554–D561CrossRefGoogle Scholar
  8. 8.
    Choi S, Bae S-E, Park T-H (2017) Electrochemical and spectroscopic monitoring of interactions of oxide ion with U (III) and Ln (III) (Ln = Nd, Ce, and La) in LiCl-KCl melts. J Electrochem Soc 164:H5068–H5073CrossRefGoogle Scholar
  9. 9.
    Larsen RP (1959) Dissolution of uranium metal and its alloys. Anal Chem 31:545–549CrossRefGoogle Scholar
  10. 10.
    Laue CA, Gates-Anderson D, Fitch TE (2004) Dissolution of metallic uranium and its alloys. Part I. Review of analytical and process-scale metallic uranium dissolution. J Radioanal Nucl Chem 261:709–717CrossRefGoogle Scholar
  11. 11.
    Brunzie GF, Johnson TR, Steunenberg RK (1961) Selective dissolution of uranium from uranium-uranium oxide mixtures by bromine-ethyl acetate. Anal Chem 33:1005–1006CrossRefGoogle Scholar
  12. 12.
    Choi K-S, Lee C-H, Kim J-G, Kim W-H, Kang J-G (2007) Separating Ag, B, Cd, Dy, Eu, and Sm in a Gd matrix using 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester extraction chromatography for ICP-AES analysis. Talanta 71:662–667CrossRefGoogle Scholar
  13. 13.
    Choi EY, Kim JK, Im HS, Choi IK, Na SH, Lee JW, Jeong SM, Hur JM (2013) Effect of the UO2 form on the electrochemical reduction rate in a LiCl-Li2O molten salt. J Nucl Mater 437:178–187CrossRefGoogle Scholar
  14. 14.
    Seo CS, Park SB, Park BH, Jung KJ, Park SW, Kim SH (2006) Electrochemical study on the reduction mechanism of uranium oxide in a LiCl-Li2O molten salt. J Nucl Sci Technol 43:587–595CrossRefGoogle Scholar
  15. 15.
    De Souza AL, Cotrim MEB, Pires MAF (2013) An overview of spectrometric techniques and sample preparation for the determination of impurities in uranium nuclear fuel grade. Microchem J 106:194–201CrossRefGoogle Scholar
  16. 16.
    Lee CH, Suh MY, Choi KS, Kim JS, Song BC, Jee KY, Kim WH (2001) Separation of fission products from spent pressurized water reactor fuels by anion exchange and extraction chromatography for inductively coupled plasma atomic emission spectrometric analysis. Anal Chim Acta 428:133–142CrossRefGoogle Scholar
  17. 17.
    Lee CH, Suh MY, Choi KS, Kim JS, Park YJ, Kim WH (2003) Determination of Ru, Rh, Pd, Te, Mo and Zr in spent pressurized water reactor fuels by ion exchange and extraction chromatographic separations and inductively coupled plasma atomic emission spectrometric analysis. Anal Chim Acta 475:171–179CrossRefGoogle Scholar
  18. 18.
    Skinner M, Knight D (2016) The behaviour of selected fission products and actinides on UTEVA® resin. J Radioanal Nucl Chem 307:2549–2555CrossRefGoogle Scholar
  19. 19.
    Horwitz EP, Dietz ML, Chiarizia R, Diamond H, Essling AM, Graczyk D (1992) Separation and preconcentration of uranium from acidic media by extraction chromatography. Anal Chim Acta 266:25–37CrossRefGoogle Scholar
  20. 20.
    Geckeis H, Neumann W, Müller W (1991) Dissolution of platinum metal alloys contained in the feed clarification sludge. J Radioanal Nucl Chem 152:199–206CrossRefGoogle Scholar
  21. 21.
    Lucuta PG, Verrall RA, Matzke H, Palmer BJ (1991) Microstructural features of SIMFUEL—simulated high-burnup UO2-based nuclear fuel. J Nucl Mater 178:48–60CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Tae-Hong Park
    • 1
    • 2
  • Young-Hwan Cho
    • 1
  • Byungman Kang
    • 1
  • Jong-Goo Kim
    • 1
  • Kyungwon Suh
    • 1
  • Jihye Kim
    • 1
  • Sang-Eun Bae
    • 1
    • 2
  • Jong-Yun Kim
    • 1
    • 2
  • Jeffrey J. Giglio
    • 3
  • Matthew M. Jones
    • 4
  1. 1.Nuclear Chemistry Research DivisionKorea Atomic Energy Research InstituteDaejeonRepublic of Korea
  2. 2.Department of Radiochemistry and Nuclear NonproliferationUniversity of Science and TechnologyDaejoenRepublic of Korea
  3. 3.Advanced Post Irradiation ExaminationIdaho National LaboratoryIdaho FallsUSA
  4. 4.Analytical Research LaboratoryIdaho National LaboratoryIdaho FallsUSA

Personalised recommendations