Skip to main content
Log in

Selective extraction of plutonium(IV) over uranium(VI), americium(III), europium(III) and zirconium(IV) with bidentate O-phenoxydiamide ligands: experimental and theoretical study

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The performance of a series of novel O-phenoxydiamides extracting Zr(IV), Eu(III), U(VI), Pu(IV) and Am(III) was studied. The result of extraction experiments showed that the coordination abilities of these five congeneric O-phenoxydiamides decrease in the order of CycleDODA > PhenylDODA > ButylDODA > HexylDODA > BenzoDODA, the abilities of different metal ions coordinating with the same ligand decrease in the order of Pu(IV) ≫ U(VI) > Zr(IV), Eu(III), Am(III). At HNO3 concentration of 5.0 mol/L, the distribution ratio of BenzoDODA/n-dodecane extracting Pu(IV) is much larger than those of other metal ions, the separation factors of Pu(IV) over Eu(III), Zr(IV), U(VI) and Am(III) are between 20 and 300, which can be used for recovering Pu(IV) selectively from highly acidic liquid waste. The density functional theory (DFT) calculation of the 25 complexes in geometrical structure, Mayer bond order (MBO) and energy was further studied, the result is consistent with the experimental result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Salvatores M, Palmiotti G (2011) Radioactive waste partitioning and transmutation within advanced fuel cycles: achievements and challenges. Prog Part Nucl Phys 66(1):144–166

    Article  CAS  Google Scholar 

  2. Law JD, Brewer KN, Herbst RS (1999) Development and demonstration of solvent extraction processes for the separation of radionuclides from acidic radioactive waste. Waste Manage 19(1):27–37

    Article  CAS  Google Scholar 

  3. Nash K, Choppin G (1997) Separations chemistry for actinide elements: recent developments and historical perspective. Sep Sci Technol 32(1–4):255–274

    Article  CAS  Google Scholar 

  4. Su DP, Liu Y, Li SM, Ding SD, Jin YD, Wang ZP, Hu XY, Zhang LR (2017) Selective extraction of americium(III) over europium(III) ions with pyridylpyrazole ligands: structure—property relationships. Eur J Inorg Chem 3:651–658

    Article  CAS  Google Scholar 

  5. Silverio LB, Lamas WDQ (2011) An analysis of development and research on spent nuclear fuel reprocessing. Energ Policy 39(1):281–289

    Article  CAS  Google Scholar 

  6. Sasaki Y, Sugo Y, Suzuki S, Tachimori S (2001) The novel extractants, diglycolamides, for the extraction of lanthanides and actinides in HNO3—n-dodecane system. Solvent Extr Ion Exc 19(1):91–103

    Article  CAS  Google Scholar 

  7. Sasaki Y, Morita Y, Kitatsuji Y, Kimura T (2010) Extraction behavior of actinides and metal ions by the promising extractant, N,N,N′,N′-tetraoctyl-3,6-dioxaoctanediamide (DOODA). Solvent Extr Ion Exc 28(3):335–349

    Article  CAS  Google Scholar 

  8. Ruhela R, Panja S, Tomar BS, Mahajanc MA, Sawantc RM, Tripathib SC, Singha AK, Gandhib PM, Hublia RC, Suria AK (2012) Bis-(2-ethylhexyl) carbamoyl methoxy phenoxy-bis-(2-ethylhexyl) acetamide [BenzoDODA]—first selective extractant for plutonium(IV) recovery (SEPUR) from acidic media. Tetrahedron Lett 53(40):5434–5436

    Article  CAS  Google Scholar 

  9. Rathore DPS (2008) Advances in technologies for the measurement of uranium in diverse matrices. Talanta 77(1):9–20

    Article  CAS  PubMed  Google Scholar 

  10. Frisch MJ, et al (2009) Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT

  11. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  12. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  13. Lee CT, Yang WT, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785

    Article  CAS  Google Scholar 

  14. Dolg M, Stoll H, Preuss H (1989) Energy-adjusted ab initio pseudopotentials for the rare earth elements. J Chem Phys 90:1730

    Article  CAS  Google Scholar 

  15. Cao XY, Dolg M (2004) Segmented contraction scheme for small-core actinide pseudopotential basis sets. J Mol Struct 673:203

    Article  CAS  Google Scholar 

  16. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta 28:213–222

    Article  CAS  Google Scholar 

  17. Lan JH, Shi WQ, Yuan LY, Zhao YL, Li J, Chai ZF (2011) Trivalent actinide and lanthanide separations by tetradentate nitrogen ligands: a quantum chemistry study. Inorg Chem 50:9230

    Article  CAS  PubMed  Google Scholar 

  18. Lan JH, Shi WQ, Yuan LY, Feng YX, Zhao YL, Chai ZF (2012) Thermodynamic study on the complexation of Am(III) and Eu(III) with tetradentate nitrogen ligands: a probe of complex species and reactions in aqueous solution. J Phys Chem A 116:504

    Article  CAS  PubMed  Google Scholar 

  19. Lan JH, Shi WQ, Yuan LY, Li J, Zhao YL, Chai ZF (2012) Recent advances in computational modeling and simulations on the An (III)/Ln (III) separation process. Coord Chem Rev 256:1406–1417

    Article  CAS  Google Scholar 

  20. Carpenter JE, Weinhold F (1988) Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins” natural bond orbital procedure. J Mol Struct 46:41–62

    Article  CAS  Google Scholar 

  21. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  22. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  CAS  PubMed  Google Scholar 

  23. Dapprich S, Frenking G (1995) Investigation of donor-acceptor interactions: a charge decomposition analysis using fragment molecular orbitals. J Phys Chem 99:9352–9362

    Article  CAS  Google Scholar 

  24. Gorelsky SI, Ghosh S, Solomon EI (2006) Mechanism of N2O reduction by the μ4-S tetranuclear CuZ cluster of nitrous oxide reductase. J Am Chem Soc 128:278–290

    Article  CAS  PubMed  Google Scholar 

  25. Liu S (2007) Steric effect: a quantitative description from density functional theory. J Chem Phys 126(24):244103

    Article  CAS  PubMed  Google Scholar 

  26. Pahan S, Boda A, Ali SM (2015) Density functional theoretical analysis of structure, bonding, interaction and thermodynamic selectivity of hexavalent uranium(UO2 2+) and tetravalent plutonium(Pu4+) ion complexes of tetramethyl diglycolamide (TMDGA). Theor Chem Acc 134(4):1–16

    Article  CAS  Google Scholar 

  27. Frisch A, Nielsen AB, Holder AJ (2000) Gaussview Users Manual. Gaussian Inc, Pittsburg

    Google Scholar 

  28. Hoppe R (1970) The coordination number—an “inorganic chameleon”. Angew Chem Int Edit 9(1):25–34

    Article  CAS  Google Scholar 

  29. Denecke MA, Panak PJ, Burdet F, Weigl M, Geist A, Klenze R, Mazzanti M, Gompper K (2007) A comparative spectroscopic study of U(III)/Am(III) and Ln(III) complexed with N-donor ligands. Cr Chim 10(10–11):872–882

    Article  CAS  Google Scholar 

  30. Verma PK, Kumari N, Pathak PN, Sadhu B, Sundararajan M, Aswal VK, Mohapatra PK (2014) Investigations on preferential Pu(IV) extraction over U(VI) by N,N-dihexyloctanamide versus tri-n-butyl phosphate: evidence through small angle neutron scattering and DFT studies. J Phys Chem A 118(22):3996–4004

    Article  CAS  PubMed  Google Scholar 

  31. Xiao CL, Wu QY, Wang CZ, Zhao YL, Chai ZF, Shi WQ (2014) Quantum chemistry study of uranium(VI), neptunium(V), and plutonium(IV, VI) complexes with preorganized tetradentate phenanthrolineamide ligands. Inorg Chem 53(20):10846–10853

    Article  CAS  PubMed  Google Scholar 

  32. Kolařík Z, Dražanová S, Chotívka V (1971) Acidic organophosphorus extractants—XII: effect of the extractant structure on the extraction of lanthanides(III). J Inorg Nucl Chem 33(4):1125–1133

    Article  Google Scholar 

  33. Wu QY, Wang CZ, Lan JH, Xiao CL, Wang XK, Zhao YL, Chai ZF, Shi WQ (2014) Theoretical investigation on multiple bonds in terminal actinide nitride complexes. Inorg Chem 53(18):9607

    Article  CAS  PubMed  Google Scholar 

  34. Clouston LJ, Siedschlag RB, Rudd PA, Planas N, Hu S, Miller AD, Gagliardi L, Lu CC (2013) Systematic variation of metal-metal bond order in metal-chromium complexes. J Am Chem Soc 135(35):13142–13148

    Article  CAS  PubMed  Google Scholar 

  35. Cramer RE, Edelmann F, Mori AL, Roth S, Gilje JW, Tatsumi K, Nakamura A (1988) Preparation, structure, and bonding in an organoactinide imide, Cp3AnNPPh3 (An = uranium, thorium): a comparison of the bonding of uranium to nitrogen- and oxygen-donor ligands. Organometallics 7(4):841–849

    Article  CAS  Google Scholar 

  36. Bryantsev VS, Hay BP (2015) Theoretical prediction of Am(III)/Eu(III) selectivity to aid the design of actinide-lanthanide separation agents. Dalton T 44(17):7935

    Article  CAS  Google Scholar 

  37. Bühl M, Sieffert N, Chaumont A, Wipff G (2011) Water versus acetonitrile coordination to uranyl. Density functional study of cooperative polarization effects in solution. Inorg Chem 50(1):299–308

    Article  CAS  PubMed  Google Scholar 

  38. Zhang JP, Chang L, Ouyang YG (2010) Effect of temperature, acidity and uranium saturation on distribution coefficient of Pu(IV) in 30%TBP/OK-HNO3 system. Ann Rep China Inst Atom Energy 1:283–284

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Major Program “Research on Actinide Chemistry in the Complex System of Spent Fuel Reprocessing” of the National Natural Science Foundation of China (Grant 21790370).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taihong Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Lv, H., Zuo, C. et al. Selective extraction of plutonium(IV) over uranium(VI), americium(III), europium(III) and zirconium(IV) with bidentate O-phenoxydiamide ligands: experimental and theoretical study. J Radioanal Nucl Chem 317, 103–110 (2018). https://doi.org/10.1007/s10967-018-5836-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5836-y

Keywords

Navigation