Studies on distribution of radionuclides and behavior of clay minerals in the soils of river environs

  • C. S. Kaliprasad
  • P. R. Vinutha
  • Y. Narayana


In the present investigation, the activity concentrations of radionuclides in the soils of Cauvery river environs were measured using HPGe gamma ray spectrometer. FTIR spectroscopy was used to find minerals present in soil samples. The mean values of 40K, 226Ra and 232Th in the soil samples was found to be 132.9, 22.95 and 26.88 Bq kg−1 respectively. The estimated absorbed dose rate and hazard indices were found to be within the safety limits. The extinction coefficients for quartz, sepiolite and kaolinite in soil varied from 0.64 to 37.24, 0.39 to 34.47 and 9.66 to 35.81 respectively. The correlation matrix showed that the clay mineral like kaolinite influences the increase in activity concentration of radionuclides.


Cauvery river Radionuclides Clay minerals Dose rate Radium Gamma ray spectrometer 


  1. 1.
    UNSCEAR (2000) United Nations Scientific Committee on the effect of atomic radiation. Sources and effects of ionizing radiation. Report to General Assembly, with Scientific Annexes, United Nations, New YorkGoogle Scholar
  2. 2.
    Rangaswamy DR, Sannappa J (2016) Distribution of natural radionuclides and radiation level measurements in Karnataka State, India: an overview. J Radioanal Nucl Chem 310(1):1–12CrossRefGoogle Scholar
  3. 3.
    Narayana Y, Rajashekara KM, Siddappa K (2007) Natural radiovactivity in some major rivers of costal Karnataka on the south west coast of India. J Environ Radioact 95:98–106CrossRefGoogle Scholar
  4. 4.
    Aytas S, Yusan S, Aslani MA, Karali T, Turkozu DA, Gok C, Erenturk S, Gokse M, Oguz FK (2012) Natural radioactivity of riverbank sediments of the Maritza and Tundja Rivers in Turkey. J Environ Sci Health Part A 47:2163–2172CrossRefGoogle Scholar
  5. 5.
    Ramasamy V, Paramasivama K, Suresh G, Jose MT (2014) Role of sediment characteristics on natural radiation level of the Vaigai river sediment, Tamilnadu, India. J Environ Radioact 127:64–74CrossRefGoogle Scholar
  6. 6.
    Shichi T, Takagi K (2000) Clay minerals as photochemical reaction fields. J Photochem Photobiol C 1:113–130CrossRefGoogle Scholar
  7. 7.
    Narayana Y, Kaliprasad CS, Sanjeev Ganesh (2016) Natural radionuclide levels in sediments of Cauvery riverine environment. Radiat Prot Dosim 171(2):229–233CrossRefGoogle Scholar
  8. 8.
    Kaliprasad CS, Narayana Y (2016) Speciation and behaviour of 210Po and 210Pb in the riverine ecosystem of Cauvery, a major river of south India. Radiochemistry 58(4):431–437CrossRefGoogle Scholar
  9. 9.
    EML Procedure Manual (1983) In: Herbert L. volchok, Gail de Planque (ed), 26th edn, Environment Measurement Laboratory, U.S. Department of energyGoogle Scholar
  10. 10.
    Narayana Y, Rajashekara KM, Siddappa K (2007) Natural radiovactivity in some major rivers of costal Karnataka on the south west coast of India. J Environ Radioact 95:98–106CrossRefGoogle Scholar
  11. 11.
    Venunathan N, Kaliprasad CS, Narayana Y (2016) Natural radioactivity in sediment and river bank soil of Kallada river of Kerala, South India and its associated radiation risk. Radiat Prot Dosim 171(2):271–276CrossRefGoogle Scholar
  12. 12.
    Mullainathan S, Nithiyanantham S (2016) FTIR spectroscopic studies of rock sediments in Namakkal, Tamil Nadu, South India, for vegetations. Environ Earth Sci 75:692CrossRefGoogle Scholar
  13. 13.
    Rajesh P, Joseph Vedhagiri S, Ramasamy V (2013) FTIR characterisation of minerals in charnockite rocks of Kalrayan Hills, India. Arch Phys Res 4(4):5–13Google Scholar
  14. 14.
    Krishnamoorthy N, Mullainathan S, Mehra R (2015) Variation of naturally occurring radionuclides, dose rate and mineral characteristics with particle size and altitude in bottom sediments of a river originating from Anamalai hills in the Western Ghats of India. Environ Earth Sci 74(4):3467–3483CrossRefGoogle Scholar
  15. 15.
    Santawamaitre T (2012) An evaluation of the level of naturally occurring radioactive materials in soil samples along the Chao Phraya river Basin. PhD thesis. University of SurreyGoogle Scholar
  16. 16.
    Adukpo OK, Faanu A, Lawluvi H, Tettey Larbi L, Emi Reynolds G, Darko EO, Kansaana C, Kpeglo DO, Awudu AR, Glover ET, Amoah PA, Efa AO, Agyemang LA, Agyeman BK, Kpordzro R, Doe AI (2015) Distribution and assessment of radionuclides in sediments, soil and water from the lower basin of river Pra in the Central and Western Regions of Ghana. J Radioanal Nucl Chem 303:1679–1685Google Scholar
  17. 17.
    Lu X, Zhang X, Wang F (2008) Natural radioactivity in sediment of Wei river, China. Environ Geol 53(7):1475–1481CrossRefGoogle Scholar
  18. 18.
    Akozcan S (2014) Annual effective dose of naturally occurring radionuclides in soil and sediment. Toxicol Environ Chem 96(3):379–386CrossRefGoogle Scholar
  19. 19.
    Nasrabadi MN, Mostajaboddavati M, Hajialiani G (2014) Natural radioactivity distribution in riverbank soils along the Dez river basin of Iran. World J Environ Res 4(1):07–22Google Scholar
  20. 20.
    Kurnaz A, Kucukomeroglu B, Keser R, Okumusoglu NT, Kprkmaz F, Karahan G, Cevik U (2007) Determination of radioactivity levels and hazards of soil and sediment samples in Firtina Valley (Rize, turkey). Appl Radiat Isot 65:1281–1289CrossRefGoogle Scholar
  21. 21.
    Yadav Manjulata, Rawat Mukesh, Dangwal Anoop, Prasad Mukesh, Gusain GS, Ramola RC (2015) Analysis of natural radionuclides in soil samples of purola area of Garhwal himalaya, India. Radiat Prot Dosim 167:215–218CrossRefGoogle Scholar
  22. 22.
    Beretka J, Mathew PJ (1985) Natural radioactivity of Australian building materials, waste and by-products. Health Phys 48:87–95CrossRefGoogle Scholar
  23. 23.
    Sac MM, Ortabuk F, Kumru MN, Ichedef M, Sert S (2012) Determination of radioactivity and heavy metals of Bakirçay river in Western Turkey. Appl Radiat Isot 70:2494–2499CrossRefGoogle Scholar
  24. 24.
    Kritsananuwat R, Sahoo SK, Fukushi M, Pangza K, Chanyotha S (2015) Radiological risk assessment of 238U, 232Th and 40K in Thailand coastal sediments at selected areas proposed for nuclear power plant sites. J Radioanal Nucl Chem 303(1):325–334CrossRefGoogle Scholar
  25. 25.
    International Commission on Radiological Protection (2007) Recommendations of the ICRP, publication 103. Pergamon Press, OxfordGoogle Scholar
  26. 26.
    El-Arabi AM (2007) 226Ra, 232Th and 40K concentrations in igneous rocks from eastern desert, Egypt and its radiological implications. Radiat Meas 42:94–100CrossRefGoogle Scholar
  27. 27.
    Zaim Nimet, Atlas Hakan (2016) Assessment of radioactivity levels and radiation hazards using gamma spectrometry in soil samples of Edirne, Turkey. J Radioanal Nucl Chem 310(3):959–967CrossRefGoogle Scholar
  28. 28.
    Fysh SA, Fredericks PM (1983) Fourier transform infrared studies of aluminous goethites and haematites. Clays Clay Miner 31(5):377–381CrossRefGoogle Scholar
  29. 29.
    Ramasamy V, Rajkumar P, Ponnusamy V (2009) Depth wise analysis of recently excavated Vellar river sediments through FTIR and XRD studies. Indian J Phys 83(9):1295–1308CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of PhysicsMangalore UniversityMangaloreIndia
  2. 2.Beary’s Institute of TechnologyMangaloreIndia

Personalised recommendations