Skip to main content
Log in

Theoretical study on complexes and reactions of boron isotopic exchange separation with fluorinated anisoles as novel donors

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Semi-empirical and ab initio density-functional theory (DFT) methods were evaluated for the description of isotope exchange reactions to produce enriched 10B species. We found that DFT calculations using M06-2X/6-311+G(3d,2p) functional and basis sets in combination with the SMD implicit solvation model were able to correctly predict the performance of various anisole-derived donor molecules. We confirmed that fluorination results in greatly increased separation factors, and successfully identified the o- and 2,4-difluorinated anisole as superior donors for chemical exchange distillation. These findings provide the basis for an efficient approach to rapidly screen and design new donor species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Potapov S (1962) Application of stable boron isotopes. Sov J At Energy 10:234–241

    Article  Google Scholar 

  2. Ivanov V, Katalnikov S (2001) Physico-chemical and engineering principles of boron isotopes separation by using BF3–anisole·BF3 system. Sep Sci Technol 36:1737–1768

    Article  Google Scholar 

  3. Semiokhin I (1996) Chemical methods of stable isotope separation. J Radioanal Nucl Chem 205:201–213

    Article  CAS  Google Scholar 

  4. Angelone M, Atzeni S, Rollet S (2002) Conceptual study of a compact accelerator-driven neutron source for radioisotope production, boron neutron capture therapy and fast neutron therapy. Nucl Instr Methods Phys Res A 487:585–594

    Article  CAS  Google Scholar 

  5. Ono K, Masunaga S, Suzuki M, Kinashi Y, Takagaki M, Akaboshi M (1999) The combined effect of boronophenylalanine and borocaptate in boron neutron capture therapy for SCCVII tumors in mice. Int J Radiat Oncol Biol Phys 43:431–436

    Article  CAS  Google Scholar 

  6. Verbeke J, Leung K, Vujic J (2000) Development of a sealed-accelerator-tube neutron generator. Appl Radiat Isot 53:801–809

    Article  CAS  Google Scholar 

  7. Palko A, Drury J (1969) Chemical fractionation of boron isotopes. Adv Chem 89:40–56

    Article  Google Scholar 

  8. Takeda K, Morita K (1996) Enrichment factor, height of separation unit, and separation efficiency by ion exchange with chemical reaction. Sep Sci Technol 31:2655–2670

    Article  CAS  Google Scholar 

  9. Sevryugova N, Uvarov O, Zhavoronkov N (1961) Separation of the stable isotopes of boron. Sov J At Energy 9:614–629

    Article  Google Scholar 

  10. Joseph M, Manoravi P (2003) Boron isotope enrichment in nanosecond pulsed laser-ablation plume. Appl Phys A 76:153–156

    Article  CAS  Google Scholar 

  11. Buchanov V, Kazaryan M, Kalugin M, Prokhorov A (2001) The possibilities of producing 10B boron isotopes with the method of selective photoionization. Laser Phys 11:1332–1335

    CAS  Google Scholar 

  12. Wei F, Zhang W, Han M, Han L, Zhang X, Zhang S (2008) Operational policy of the boron isotopes separation by chemical exchange reaction and distillation. Chem Eng Process 47:17–21

    Article  CAS  Google Scholar 

  13. Palko A, Healy R, Landau L (1958) Separation of boron isotopes. II. The BF3 anisole system. J Chem Phys. 28:214–217

    Article  CAS  Google Scholar 

  14. Liguo H, Weijiang Z, Jingyang Y (2006) The enrichment technology for the separation and production of boron isotopes. J Isot 19:48–52

    Google Scholar 

  15. Healy R, Palko A (1958) Separation of boron isotopes. I. Boron trihalide addition compounds. J Chem Phys 28:211–213

    Article  CAS  Google Scholar 

  16. Palko A (1959) Separation of boron isotopes in the bench-scale boron fluoride-anisole unit. Ind Eng Chem 51:121–124

    Article  CAS  Google Scholar 

  17. Jancsó G (1977) Interpretation of the vapor pressure isotope effect of BF3. Isot Environ Health Stud 13:118–120

    Google Scholar 

  18. Huang Y, Cheng S, Xu J, Zhang W (2011) Research on chemical exchange process of boron isotope separation. Procedia Eng 18:151–156

    Article  CAS  Google Scholar 

  19. Nakane R, Isomura S (1966) Separation of boron-10 by low temperature distillation of boron fluoride-methyl fluoride complex. J Nucl Sci Technol 3:267–274

    Article  CAS  Google Scholar 

  20. Jiang L, Han L, Zhang W, Zhang L (2007) Decomposition reaction in separation of boron isotopes by chemical exchange reaction and distillation. Chem Eng. (China) 35:26–29

    Google Scholar 

  21. Song S, Mu Y, Li X, Bai P (2010) Advances in boron-10 isotope separation by chemical exchange distillation. Ann Nucl Energy 37:1–4

    Article  CAS  Google Scholar 

  22. Katal’nikov S, Paramonov P, Nedzvetskii V (1967) Separation of boron isotopes using isotopic exchange between BF3 and a complex of BF3 with phenetole. Sov At Energy 22:372–377

    Article  Google Scholar 

  23. Palko A, Drury J (1967) Fractionation of boron isotopes between boron trifluoride and its molecular addition compounds. J Chem Phys 47:2561–2566

    Article  CAS  Google Scholar 

  24. McLaughlin D, Tamres M (1960) The boron trifluoride addition compounds of dimethyl ether and diethyl ether. J Am Chem Soc 82:5618–5621

    Article  CAS  Google Scholar 

  25. Palko A (1959) Separation of boron isotopes. III. The n-butyl sulfide-BF3 system. J Chem Phys 30:1187–1189

    Article  CAS  Google Scholar 

  26. Herbst R, McCandless F (1994) Improved donors for the separation of the boron isotopes by gas-liquid exchange reactions. Sep Sci Technol 29:1293–1310

    Article  CAS  Google Scholar 

  27. Ownby P (2004) The boron trifluoride nitromethane adduct. J Solid State Chem 177:466–470

    Article  CAS  Google Scholar 

  28. Kiss I, Opauszky I, Matush L (1961) Data on the separation of boron isotopes in the form of volatile compounds. Sov J At Energy 10:72–75

    Article  Google Scholar 

  29. Palko A (1978) The chemical separation of boron isotopes. Department of Energy, Oak Ridge National Laboratory, Oak Ridge

    Book  Google Scholar 

  30. Wu X, Bai P, Guo X, He N (2014) 2, 4-Difluoro anisole: a promising complexing agent for boron isotopes separation by chemical exchange reaction and distillation. J Radioanal Nucl Chem 300:897–902

    Article  CAS  Google Scholar 

  31. Lin T, Zhang W, Wang L (2009) Theoretical calculation of separation factors for boron isotopic exchange between BF3 and BF3·C6H5OCH3. J Phys Chem A 113:7267–7274

    Article  CAS  Google Scholar 

  32. Khaliullin R, Bell A, Head-Gordon M (2008) Analysis of charge transfer effects in molecular complexes based on absolutely localized molecular orbitals. J Chem Phys 128:184112

    Article  Google Scholar 

  33. Khaliullin R, Cobar E, Lochan R, Bell A, Head-Gordon M (2007) Unravelling the origin of intermolecular interactions using absolutely localized molecular orbitals. J Phys Chem A 111:8753–8765

    Article  CAS  Google Scholar 

  34. Reed A, Curtiss L, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  35. Stewart J (1990) MOPAC: a semiempirical molecular orbital program. J Comput Aided Mol Des 4:1–103

    Article  Google Scholar 

  36. Stewart J (2012) Mopac2012. Stewart computational chemistry, Colorado springs

    Google Scholar 

  37. Rozanska X, Stewart J, Ungerer P, Leblanc B, Freeman C, Saxe P, Wimmer E (2014) High-throughput calculations of molecular properties in the MedeA environment: accuracy of PM7 in predicting vibrational frequencies, ideal gas entropies, heat capacities, and Gibbs free energies of organic molecules. J Chem Eng Data 59:3136–3143

    Article  CAS  Google Scholar 

  38. Frisch M, Trucks G, Schlegel HB, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Ge Petersson (2009) Gaussian 09. Gaussian, Inc., Wallingford

    Google Scholar 

  39. Zhao Y, Truhlar D (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  40. Montgomery J, Frisch M, Ochterski J, Petersson G (1999) A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J Chem Phys 110:2822–2827

    Article  CAS  Google Scholar 

  41. Montgomery J, Frisch M, Ochterski J, Petersson G (2000) A complete basis set model chemistry. VII. Use of the minimum population localization method. J Chem Phys 112:6532–6542

    Article  CAS  Google Scholar 

  42. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  Google Scholar 

  43. Taillandier M, Liquier J, Taillandier E (1968) Complexes par transfert de charge en spectroscopie ir: esters-BF3, esters-BCl3. J Mol Struct 2:437–463

    Article  CAS  Google Scholar 

  44. Taillandier M, Taillandier E (1969) Complexes par transfert de charge en spectroscopie infrarouge pyridine-BF3. Spectrochim Acta A 25:1807–1814

    Article  CAS  Google Scholar 

  45. Glendening E, Weinhold F (1998) Natural resonance theory: I. General formalism. J Comput Chem 19:593–609

    Article  CAS  Google Scholar 

  46. Marenich A, Cramer C, Truhlar D (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    Article  CAS  Google Scholar 

  47. Marenich A, Cramer C, Truhlar D (2009) Performance of SM6, SM8, and SMD on the SAMPL1 test set for the prediction of small-molecule solvation free energies. J Phys Chem B 113:4538–4543

    Article  CAS  Google Scholar 

  48. Ribeiro R, Marenich A, Cramer C, Truhlar D (2010) Prediction of SAMPL2 aqueous solvation free energies and tautomeric ratios using the SM8, SM8AD, and SMD solvation models. J Comput Aided Mol Des 24:317–333

    Article  CAS  Google Scholar 

  49. Calculation of the HETP at total reflux: generalization of the Fenske equation. http://www.koch-glitsch.com/document%20library/aiche_f01_04_calculation_of_the_hetp_at_total_reflux.pdf. Accessed 17 Mar 2018

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant [Number 21202116]; Independent Innovation Foundation of Tianjin University under Grant [Number 2016XZC-0071]; and Natural Science Foundation of Tianjin under Grant [Number 16JCYBJC20300].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Bai or Xianghai Guo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 927 kb)

Supplementary material 2 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, F., Zhang, J., Fu, T. et al. Theoretical study on complexes and reactions of boron isotopic exchange separation with fluorinated anisoles as novel donors. J Radioanal Nucl Chem 316, 587–594 (2018). https://doi.org/10.1007/s10967-018-5824-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5824-2

Keywords

Navigation