Advertisement

Equilibrium studies and modeling on the removal of 56Mn(II) by alumina and kaolinite

  • V. E. Badillo-Almaraz
  • C. López-Reyes
  • J. M. Soriano-Rodríguez
Article
  • 71 Downloads

Abstract

The removal of manganese from aqueous solutions on synthetic alumina and natural kaolinite was investigated in batch experiments as a function of pH. Experiments were carried out by using the radiotracer 56Mn, produced by neutron activation. Theoretical analysis of manganese removal was performed considering the existence of a single type of surface sites, denoted as ≡ SOH°. The uptake of manganese on kaolinite is similar to that on alumina, indicating that adsorption occurred on the variable-charged aluminol sites. Adsorption experiments suggest that ≡ AlOH° group is the most probable edge site for complexing manganese cations through mononuclear surface complexes (≡ AlOMn+) and (≡ AlOMnOH).

Keywords

Sorption mechanism Manganese Alumina Kaolinite Radiotracer 56Mn 

Notes

Acknowledgements

The authors thank Juan Vidal for conducting radiochemical measurements and also acknowledge the Reactor team at ININ for their assistance in radionuclide production.

References

  1. 1.
    Mergler D (1999) Neurotoxic effects of low level exposure to manganese in human populations. Environ Res Sect A. 80:99–102CrossRefGoogle Scholar
  2. 2.
    Okita PM, Shanks WC (1992) Origin of stratiform sediment-hosted manganese carbonate ore deposits: examples from Molango, Mexico, and TaoJiang, China. Chem Geol 99:139–163CrossRefGoogle Scholar
  3. 3.
    Rodríguez-Agudelo Y, Riojas-Rodríguez H, Ríos C, Rosas I, Sabido-Pedraza E, Miranda J, Siebe C, Texcalac JL, Santos-Burgoa C (2006) Motor alterations associated with exposure to manganese in the environment in Mexico. Sci Total Environ 368:542–556CrossRefGoogle Scholar
  4. 4.
    Santos-Burgoa C, Rios C, Mercado LA, Arechiga-Serrano R, Cano-Valle F, Alatorre Eden-Wynter R, Texcalac-Sangrador JL, Villa-Barragan JP, Rodriguez-Agudelo Y, Montes S (2001) Exposure to manganese: health effects on the general population, a pilot study in central Mexico. Environ Res Sect. A 85:90–104CrossRefGoogle Scholar
  5. 5.
    Mergler D, Baldwin M (1997) Early manifestations of manganese neurotoxicity in humans: an update. Environ Res 73:92–100CrossRefGoogle Scholar
  6. 6.
    Alvarez-Bastida C, Martínez-Miranda V, Vázquez-Mejía G, Solache-Ríos M, de Oca GF-M, Trujillo-Flores E (2013) The corrosive nature of manganese in drinking water. Sci Total Environ 447:10–16CrossRefGoogle Scholar
  7. 7.
    Soberanis MP, Huerta MLR (2013) Final Report. Lineamientos para la Optimización del Diseño, Construcción y Operación de la Tecnología para Remoción de Hierro y Manganeso en Agua Potable. http://files.conagua.gob.mx/transparencia/6%20SGAPDyS%20Pot%20y%20Trat%202013.pdf. Accesed 23 June 2017
  8. 8.
    Mexican Guideline for Drinking Water (1996) Specification NOM-127-SSA-1994. Secretaría de Salud, Mexico. www.salud.gob.mx/unidades/cdi/nom/127ssa14.html. Accesed 27 June 2017
  9. 9.
    World Health Organisation (2011) Guidelines for Drinking-water Quality. Fourth Edition. http://www.who.int/publications/2011/9789241548151_eng.pdf. Accesed 27 June 2017
  10. 10.
    U.S. Environmental Protection Agency (2017) Drinking water health advisory for manganese. Washington, DC http://www.epa.gov/safewater/.EPA-822-R-04-003. Accesed 27 June 2017
  11. 11.
    Patil DS, Chavan SM, Oubagaranadin JUK (2016) A review of technologies for manganese removal from wastewaters. J Environ Chem Eng 4:468–487CrossRefGoogle Scholar
  12. 12.
    Zhang W, Cheng C, Pranolo Y (2010) Investigation of methods for removal and recovery of manganese in hydrometallurgical process. Hydrometallurgy 101:58–63CrossRefGoogle Scholar
  13. 13.
    Bamforth SM, Manning DAC, Singleton I, Younger PL, Johnson KL (2006) Manganese removal from mine waters—investigating the occurrence and importance of manganese carbonates. Appl Geochem 21:1274–1287CrossRefGoogle Scholar
  14. 14.
    Roccaro P, Barone C, Mancini G, Vagliasindi FGA (2007) Removal of manganese from water supplies intended for human consumption: a case study. Desalination 210:205–214CrossRefGoogle Scholar
  15. 15.
    Ellis D, Bouchard Ch, Lantagne G (2000) Removal of iron and manganese from groundwater by oxidation and microfiltration. Desalination 130:255–264CrossRefGoogle Scholar
  16. 16.
    Gupta VK, Carrot PJM, Carrot Ribeiro, Suhas MML (2009) Low-cost adsorbents: growing approach to wastewater treatment—a review. Crit Rev Environ Sci Technol 39:783–842CrossRefGoogle Scholar
  17. 17.
    Ates A (2014) Role of modification of natural zeolite in removal of manganese from aqueous solutions. Powder Technol 264:86–95CrossRefGoogle Scholar
  18. 18.
    García-Mendieta A, Solache-Ríos M, Olguín MT (2009) Evaluation of the sorption properties of a Mexican clinoptilolite-rich tuff for iron, manganese and iron-manganese systems. Microporous Mesoporous Mater 118:489–495CrossRefGoogle Scholar
  19. 19.
    Yavuz Ö, Altunkaynak Y, Güzel F (2003) Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water Res 37:948–952CrossRefGoogle Scholar
  20. 20.
    Gogoi D, Shanmugamani AG, Rao SVS, Kumar T, Velmurugan S (2016) Study of removal process of manganese using synthetic calcium hydroxyapatite from an aqueous solution. Desalin Water Treat 57:6566–6573CrossRefGoogle Scholar
  21. 21.
    Vázquez-Ortega A, Fein JB (2017) Thermodynamic modeling of Mn(II) adsorption onto manganese oxidizing bacteria. Chem Geol 464:147–154CrossRefGoogle Scholar
  22. 22.
    Ikhsan J, Johnson BB, Wells JD (1999) A comparative study of the adsorption of transition metals on kaolinite. J Colloid Interface Sci 217:403–410CrossRefGoogle Scholar
  23. 23.
    Du Q, Sun Zh, Forsling W, Tang H (1997) Adsorption of copper at aqueous illite surfaces. J Colloid Interface Sci 187:232–242CrossRefGoogle Scholar
  24. 24.
    Yu S, Wang X, Chen Z, Tan X, Wang H, Hu J, Alsaedi A, Alharbi NS, Guo W, Wang X (2016) Interaction mechanism of radionickel on Na-montmorillonite: influences of pH, electrolyte cations, humic acid and temperature. Chem Eng J 302:77–85CrossRefGoogle Scholar
  25. 25.
    Gu X, Evans LJ (2008) Surface complexation modelling of Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II) adsorption onto kaolinite. Geochim Cosmochim Acta 72:267–276CrossRefGoogle Scholar
  26. 26.
    Schaller MS, Koretsky CM, Lund TJ, Landry ChJ (2009) Surface complexation modeling of Cd(II) adsorption on mixtures of hydrous ferric oxide, quartz and kaolinite. J Colloid Interface Sci 339:302–309CrossRefGoogle Scholar
  27. 27.
    Vasconcelos IF, Haack EA, Maurice PA, Bunker BA (2008) EXAFS analysis of cadmium(II) adsoprtion to kaolinite. Chem Geol 249:237–249CrossRefGoogle Scholar
  28. 28.
    Gräfe M, Singh B, Balasubramanian M (2007) Surface speciation of Cd(II) and Pb(II) on kaolinite by XAFS spectroscopy. J Colloid Interface Sci 315:21–32CrossRefGoogle Scholar
  29. 29.
    Herbelin A, Westall J (1999) FITEQL: a computer program for determination of chemical equilibrium constants from experimental data, version 40. Oregon State University, CorvallisGoogle Scholar
  30. 30.
    Badillo-Almaraz VE, Solache-Ríos M, Badillo-Almaraz V, Zarate-Morales A, Flores-Moreno A (2017) Radiotracer techniques (18F) and modeling of fluoride sorption on alumina. J Fluor Chem 199:113–118CrossRefGoogle Scholar
  31. 31.
    Liu X, Lu X, Sprik M, Cheng J, Meijer EJ, Wang R (2013) Acidity of edge surface sites of montmorillonite and kaolinite. Geochim Cosmochim Acta 117:180–190CrossRefGoogle Scholar
  32. 32.
    Nordstrom DK, Plummer LN, Langmuir D, Busengerg E, May HM, Jones BF, Parkhurst DL (1990) Revised chemical equilibrium data for major water-mineral reactions and their limitations. In: Melchior DC, Basset RL (eds) Chemical modeling of aqueous systems II. ACS symposium series 416. American Chemical Society, Washington, DCGoogle Scholar
  33. 33.
    Baes ChF Jr, Mesmer RE (1976) The hydrolysis of cations. Wiley, New YorkGoogle Scholar
  34. 34.
    Fujii T, Yamana H, Takamiya K, Watanabe M, Moriyama H (2002) Adsorption of fission products on a metal surface in nitric acid solutions: radiochemical study using a multitracer. J Radioanal Nucl Chem 253:199–204CrossRefGoogle Scholar
  35. 35.
    Brady PV, Cygan RT, Nagy KL (1996) Molecular controls on kaolinite surface charge. J Colloid Interface Sci 183:356–364CrossRefGoogle Scholar
  36. 36.
    Spark KM, Wells JD, Johnson BB (1995) Characterizing trace metal adsorption on kaolinite. Eur J Soil Sci 46:633–640CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • V. E. Badillo-Almaraz
    • 1
  • C. López-Reyes
    • 1
  • J. M. Soriano-Rodríguez
    • 1
  1. 1.Instituto Nacional de Investigaciones NuclearesLa Marquesa OcoyoacacMexico

Personalised recommendations