Skip to main content
Log in

Sorption and removal of iodate from aqueous solution using dried duckweed (Landoltia punctata) powder

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Dried duckweed (Landoltia punctata) powder is applied to remove IO3 from aqueous solutions under various conditions. The results indicate the Kd is 150 ml g−1 under general conditions. The sorption kinetics follow the pseudo-second-order equation, and the isotherm is well described by the Freundlich model. Hydroxyl and carbonyl groups contribute to IO3 sorption by ion-exchange, electrostatic attraction and redox reactions. Spectroscopic analyses prove that IO3 is reduced to I2 and I by hydroxyl groups. These results demonstrate that duckweed (Landoltia punctata) is a promising biosorbent for environmental remediation of radioactive iodine pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Carpenter LJ (2003) Iodine in the marine boundary layer. Chem Rev 103:4953–4962

    Article  CAS  Google Scholar 

  2. Huang RJ, Hoffmann T (2009) Development of a coupled diffusion denuder system combined with gas chromatography/mass spectrometry for the separation and quantification of molecular Iodine and the activated Iodine compounds Iodine monochloride and hypoiodous acid in the marine atmosphere. Anal Chem 81:1777–1783

    Article  CAS  Google Scholar 

  3. Atkins M, Kindness A, Glasser FP, Gibson I (1990) The use of silver as a selective precipitant for 129I in radioactive waste management. Waste Manage 10:303–308

    Article  CAS  Google Scholar 

  4. Hou XL, Hansen V, Aldahan A, Possnert G, Lind OC, Lujaniene G (2009) A review on speciation of 129Iodine in the environmental and biological samples. Anal Chim Acta 632:181–196

    Article  CAS  Google Scholar 

  5. Lin J, Liu Y, Zhang GH (2015) Research progress in the removal of radioactive iodonucleoid from the water body. Ind Water Treat 35:10–18

    Google Scholar 

  6. Silva MR, Coelho MAZ, Cammarota MC (2008) Potential method to improve the treatment efficiency of persistent contaminants in industrial wastewater. J Hazard Mater 150:438–445

    Article  CAS  Google Scholar 

  7. Upadhyay AR, Mishra VK, Pandey SK, Tripathi BD (2007) Biofiltration of secondary treated municipal wastewater in a tropical city. Ecol Eng 30:9–15

    Article  Google Scholar 

  8. Nie XQ, Dong FQ, Liu N, Zhang D, Liu MX (2015) Biosorption and biominearli- zation of Uranium (VI) from aqueous solutions by Landoltia Punctata. Spectrosc Spect Anal 35:2613–2619

    CAS  Google Scholar 

  9. Chen LC, Fang Y, Jin YL (2015) Biosorption of Cd2+ by untrated dried powder of duckweed Lemna aequinoctialis. Desalin Water Treat 53:37–41

    Google Scholar 

  10. Chen LC, Fang Y, Jin YL (2013) Biosorption of Pb2+ by dried powder of duckweed (Lemna aequinoctialis). Chin J Appl Environ Biol 19:1046–1052

    Article  CAS  Google Scholar 

  11. Yang S, Wu WL, Hou XJ, Wu F, Lu J (2017) Sorption of Thorium (IV) from aqueous solution by Melamine modified Lemna minor. Act Scientiae Circumstantiate 3:1413–1418

    Google Scholar 

  12. Choudhury TR, Acher T, Amin MN, Quraishi S, Mustafa A (2015) Removal of Arsenic (III) from groundwater by adsorption onto duckweed (Lemma minor). Pure Appl Chem 6:120–127

    Article  Google Scholar 

  13. Abbaszadeh S, Alwi SRW, Webb C, Ghasemi N, Muhamad II (2016) Treatment of lead-contaminated water using activated carbon adsorbents from locally available papaya peel biowaste. J Clean Prod 118:210–222

    Article  CAS  Google Scholar 

  14. Tang YK, Wei XR, Yao QY, Lan ZM, Li T (2011) Study of duckweed (Lemma perpusilla Torr.) for use in phytoremediation of lead-and copper-contaminated water bodies. J Environ Eng 5:2209–2214

    CAS  Google Scholar 

  15. Romero-Guzman ET, Reyes-Gutierrez LR, Marín-Allende MJ, Gonzalez-Acevedo ZI, Olguín-Gutierrez MT (2013) Physicochemical properties of non-living water hyacinth (Eichhornia crassipes) and lesser duckweed (Lemna minor) and their influence on the As (V) adsorption processes. Chem Ecol 29:459–475

    Article  CAS  Google Scholar 

  16. Cahyadi W, Firman K, Ibrahim S, Kartadarma E (2010) Determination of Iodate and Iodine content in iodized salt by ion pair high performance liquid chromatography method. J Teknologi Dan Industri Pangan 15:4041–4085

    Google Scholar 

  17. Kuncham K, Nair S, Durani S, Bose R (2017) Effect removal of uranium (VI) from aqueous medium using ceria nanocrystals: an adsorption behavioural study. J Radioanal Nucl Chem 311:101–112

    Article  Google Scholar 

  18. Liu HJ, Xie SB, Wang TC (2017) Effect of coexisting cations on the adsorption of cesium onto poly (β-cyclodextrin)/bentonite composite. J Radioanal Nucl Chem 312:557–565

    Article  CAS  Google Scholar 

  19. Ai L, Luo XG, Lin XY, Zhang SZ (2013) Biosorption behaviors of uranium(VI) from aqueous solution by sunflower straw and insights of binding mechanism. J Radioanal Nucl Chem 298:1823–1834

    Article  CAS  Google Scholar 

  20. Gupta VK, Rastogi A (2008) Biosorption of lead from aqueous solutions by green algae spirogyra species: kinetics and equilibrium studies. J Hazard Mater 152:407–414

    Article  CAS  Google Scholar 

  21. Chen H, Zhao J, Dai GL, Wu JY, Yan H (2010) Adsorption characteristics of Pb(II) from aqueous solution onto a natural biosorbent, fallen Cinnamomum camphora leaves. Desalination 262:174–182

    Article  CAS  Google Scholar 

  22. Aksu Z (2001) Equilibrium and kinetic modeling of cadmium (II) biosorption by C. vulgaris in a batch system: effect of temperature. Sep Purify Technol 21:285–294

    Article  CAS  Google Scholar 

  23. Tian Y, Wu M, Meng LD, Huang Y (2010) Modification of natural cellulose fibers for Arsenic adsorption from water. Sci Technol Rev 28:29–32

    CAS  Google Scholar 

  24. ZhaoY Yang S, Ding D, Chen J, Yang Y (2013) Effective adsorption of Cr(VI) from aqueous solution using natural akadama clay. J Colloid Interface Sci 395:198–204

    Article  Google Scholar 

  25. Ling Y, He BZ, Bao YY (1999) Studied on the chemical constituents of common duckweed (Spirodela polyrrhiza). Chin Tradit Herbal Drugs 30:88–89

    CAS  Google Scholar 

  26. Lei ZQ, Ma HC (2005) Periodinane oxidizing regents. Chem Bull 9:650–658

    Google Scholar 

  27. Fukui M, Fujiyama Y, Satta N (1996) Factors affecting interaction of radioiodide and iodate species with soil. J Environ Radioactiv 31:199–216

    Article  CAS  Google Scholar 

  28. Zhang YC, Wang N, Na P (2013) Study on preparation of Ag/TiO2 composite materials and its adsorption properties for iodine ions. Ion Exch Adsorb 29:296–305

    Google Scholar 

  29. Wei L, Yao WT (2016) In situ preparation of mycelium/bayberry tannin for the removal of from strontium aqueous solution. J Radioanal Nucl Chem 310:1–10

    Article  Google Scholar 

  30. Dickinson CF, Heal GR (1999) Solid-liquid diffusion controlled rate equations. Thermochim Acta 89:340–341

    Google Scholar 

  31. Usseglio S, Damin A, Scarano D, Bordiga S, Zecchina A (2007) (I2)n en -capsulation inside TiO2: a way to tune photo activity in the visible region. J Am Cem Soc 129:2822–2828

    Article  CAS  Google Scholar 

  32. Deng PC, Wang HZ, Fan LX, Sun BW (2009) Preparation of (I2)n encapsulation inside TiO2 and photo catalytic degradation of phenol. Imaging Sci Photochem 27:198–206

    CAS  Google Scholar 

  33. Yang M, Dou XM (2006) Mechanism and models of adsorption process on solid/water interface. Acta Sci Circumst 26:1581–1585

    CAS  Google Scholar 

  34. Zhang M, Eric JR (2003) Removal of B, Cr, Mo and Se from wastewater by incorporation into hydrocalumite and ettringite. Environ Sci Technol 37:2947–2952

    Article  CAS  Google Scholar 

  35. Wang Y, Gao H, Yeredla R, Xu H, Abrecht M (2007) Control of pertechnetate sorption on activated by surface functional groups. J Colloid Interface Sci 305:209–217

    Article  CAS  Google Scholar 

  36. Matović L, Đukić A, Omerašević M (2017) Removal of pertechnetate from aqueous solution using activated pyrolytic rubber char. J Radioanal Nucl Chem 314:897–905

    Article  Google Scholar 

  37. Vidal M, Rigol A, Gil-García CJ (2009) Soil-radionuclide interactions in Quantif-ication of radionuclide transfer in terrestrial and freshwater environments for radiological assessments. International AtomicEnergy Agency, Vienna, IAEA technical document 1616, p616

  38. Muramatsu Y, Uchida S, Sriyotha P, Sriyotha K (1990) Some considerations on the sorption and desorption phenomena of iodide and iodate on soil. Water Air Soil Pollut 49:125–138

    Article  CAS  Google Scholar 

  39. Evans GJ, Hammad KA (1995) Radioanalytical studies of iodine behavior in the environment. J Radioanal Nucl Chem 192:239–247

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 11305061) and the Special Fund for Geological Disposal of High-level Radioactive Waste (Grant Nos. 2012-851).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Chen, T. Sorption and removal of iodate from aqueous solution using dried duckweed (Landoltia punctata) powder. J Radioanal Nucl Chem 316, 543–551 (2018). https://doi.org/10.1007/s10967-018-5807-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5807-3

Keywords

Navigation