Sorption and removal of iodate from aqueous solution using dried duckweed (Landoltia punctata) powder

  • Kui Zhang
  • Tao Chen


Dried duckweed (Landoltia punctata) powder is applied to remove IO3 from aqueous solutions under various conditions. The results indicate the Kd is 150 ml g−1 under general conditions. The sorption kinetics follow the pseudo-second-order equation, and the isotherm is well described by the Freundlich model. Hydroxyl and carbonyl groups contribute to IO3 sorption by ion-exchange, electrostatic attraction and redox reactions. Spectroscopic analyses prove that IO3 is reduced to I2 and I by hydroxyl groups. These results demonstrate that duckweed (Landoltia punctata) is a promising biosorbent for environmental remediation of radioactive iodine pollution.


Iodate Sorption Duckweed Remediation Biosorbent 



This work was financially supported by the National Natural Science Foundation of China (Grant No. 11305061) and the Special Fund for Geological Disposal of High-level Radioactive Waste (Grant Nos. 2012-851).


  1. 1.
    Carpenter LJ (2003) Iodine in the marine boundary layer. Chem Rev 103:4953–4962CrossRefGoogle Scholar
  2. 2.
    Huang RJ, Hoffmann T (2009) Development of a coupled diffusion denuder system combined with gas chromatography/mass spectrometry for the separation and quantification of molecular Iodine and the activated Iodine compounds Iodine monochloride and hypoiodous acid in the marine atmosphere. Anal Chem 81:1777–1783CrossRefGoogle Scholar
  3. 3.
    Atkins M, Kindness A, Glasser FP, Gibson I (1990) The use of silver as a selective precipitant for 129I in radioactive waste management. Waste Manage 10:303–308CrossRefGoogle Scholar
  4. 4.
    Hou XL, Hansen V, Aldahan A, Possnert G, Lind OC, Lujaniene G (2009) A review on speciation of 129Iodine in the environmental and biological samples. Anal Chim Acta 632:181–196CrossRefGoogle Scholar
  5. 5.
    Lin J, Liu Y, Zhang GH (2015) Research progress in the removal of radioactive iodonucleoid from the water body. Ind Water Treat 35:10–18Google Scholar
  6. 6.
    Silva MR, Coelho MAZ, Cammarota MC (2008) Potential method to improve the treatment efficiency of persistent contaminants in industrial wastewater. J Hazard Mater 150:438–445CrossRefGoogle Scholar
  7. 7.
    Upadhyay AR, Mishra VK, Pandey SK, Tripathi BD (2007) Biofiltration of secondary treated municipal wastewater in a tropical city. Ecol Eng 30:9–15CrossRefGoogle Scholar
  8. 8.
    Nie XQ, Dong FQ, Liu N, Zhang D, Liu MX (2015) Biosorption and biominearli- zation of Uranium (VI) from aqueous solutions by Landoltia Punctata. Spectrosc Spect Anal 35:2613–2619Google Scholar
  9. 9.
    Chen LC, Fang Y, Jin YL (2015) Biosorption of Cd2+ by untrated dried powder of duckweed Lemna aequinoctialis. Desalin Water Treat 53:37–41Google Scholar
  10. 10.
    Chen LC, Fang Y, Jin YL (2013) Biosorption of Pb2+ by dried powder of duckweed (Lemna aequinoctialis). Chin J Appl Environ Biol 19:1046–1052CrossRefGoogle Scholar
  11. 11.
    Yang S, Wu WL, Hou XJ, Wu F, Lu J (2017) Sorption of Thorium (IV) from aqueous solution by Melamine modified Lemna minor. Act Scientiae Circumstantiate 3:1413–1418Google Scholar
  12. 12.
    Choudhury TR, Acher T, Amin MN, Quraishi S, Mustafa A (2015) Removal of Arsenic (III) from groundwater by adsorption onto duckweed (Lemma minor). Pure Appl Chem 6:120–127CrossRefGoogle Scholar
  13. 13.
    Abbaszadeh S, Alwi SRW, Webb C, Ghasemi N, Muhamad II (2016) Treatment of lead-contaminated water using activated carbon adsorbents from locally available papaya peel biowaste. J Clean Prod 118:210–222CrossRefGoogle Scholar
  14. 14.
    Tang YK, Wei XR, Yao QY, Lan ZM, Li T (2011) Study of duckweed (Lemma perpusilla Torr.) for use in phytoremediation of lead-and copper-contaminated water bodies. J Environ Eng 5:2209–2214Google Scholar
  15. 15.
    Romero-Guzman ET, Reyes-Gutierrez LR, Marín-Allende MJ, Gonzalez-Acevedo ZI, Olguín-Gutierrez MT (2013) Physicochemical properties of non-living water hyacinth (Eichhornia crassipes) and lesser duckweed (Lemna minor) and their influence on the As (V) adsorption processes. Chem Ecol 29:459–475CrossRefGoogle Scholar
  16. 16.
    Cahyadi W, Firman K, Ibrahim S, Kartadarma E (2010) Determination of Iodate and Iodine content in iodized salt by ion pair high performance liquid chromatography method. J Teknologi Dan Industri Pangan 15:4041–4085Google Scholar
  17. 17.
    Kuncham K, Nair S, Durani S, Bose R (2017) Effect removal of uranium (VI) from aqueous medium using ceria nanocrystals: an adsorption behavioural study. J Radioanal Nucl Chem 311:101–112CrossRefGoogle Scholar
  18. 18.
    Liu HJ, Xie SB, Wang TC (2017) Effect of coexisting cations on the adsorption of cesium onto poly (β-cyclodextrin)/bentonite composite. J Radioanal Nucl Chem 312:557–565CrossRefGoogle Scholar
  19. 19.
    Ai L, Luo XG, Lin XY, Zhang SZ (2013) Biosorption behaviors of uranium(VI) from aqueous solution by sunflower straw and insights of binding mechanism. J Radioanal Nucl Chem 298:1823–1834CrossRefGoogle Scholar
  20. 20.
    Gupta VK, Rastogi A (2008) Biosorption of lead from aqueous solutions by green algae spirogyra species: kinetics and equilibrium studies. J Hazard Mater 152:407–414CrossRefGoogle Scholar
  21. 21.
    Chen H, Zhao J, Dai GL, Wu JY, Yan H (2010) Adsorption characteristics of Pb(II) from aqueous solution onto a natural biosorbent, fallen Cinnamomum camphora leaves. Desalination 262:174–182CrossRefGoogle Scholar
  22. 22.
    Aksu Z (2001) Equilibrium and kinetic modeling of cadmium (II) biosorption by C. vulgaris in a batch system: effect of temperature. Sep Purify Technol 21:285–294CrossRefGoogle Scholar
  23. 23.
    Tian Y, Wu M, Meng LD, Huang Y (2010) Modification of natural cellulose fibers for Arsenic adsorption from water. Sci Technol Rev 28:29–32Google Scholar
  24. 24.
    ZhaoY Yang S, Ding D, Chen J, Yang Y (2013) Effective adsorption of Cr(VI) from aqueous solution using natural akadama clay. J Colloid Interface Sci 395:198–204CrossRefGoogle Scholar
  25. 25.
    Ling Y, He BZ, Bao YY (1999) Studied on the chemical constituents of common duckweed (Spirodela polyrrhiza). Chin Tradit Herbal Drugs 30:88–89Google Scholar
  26. 26.
    Lei ZQ, Ma HC (2005) Periodinane oxidizing regents. Chem Bull 9:650–658Google Scholar
  27. 27.
    Fukui M, Fujiyama Y, Satta N (1996) Factors affecting interaction of radioiodide and iodate species with soil. J Environ Radioactiv 31:199–216CrossRefGoogle Scholar
  28. 28.
    Zhang YC, Wang N, Na P (2013) Study on preparation of Ag/TiO2 composite materials and its adsorption properties for iodine ions. Ion Exch Adsorb 29:296–305Google Scholar
  29. 29.
    Wei L, Yao WT (2016) In situ preparation of mycelium/bayberry tannin for the removal of from strontium aqueous solution. J Radioanal Nucl Chem 310:1–10CrossRefGoogle Scholar
  30. 30.
    Dickinson CF, Heal GR (1999) Solid-liquid diffusion controlled rate equations. Thermochim Acta 89:340–341Google Scholar
  31. 31.
    Usseglio S, Damin A, Scarano D, Bordiga S, Zecchina A (2007) (I2)n en -capsulation inside TiO2: a way to tune photo activity in the visible region. J Am Cem Soc 129:2822–2828CrossRefGoogle Scholar
  32. 32.
    Deng PC, Wang HZ, Fan LX, Sun BW (2009) Preparation of (I2)n encapsulation inside TiO2 and photo catalytic degradation of phenol. Imaging Sci Photochem 27:198–206Google Scholar
  33. 33.
    Yang M, Dou XM (2006) Mechanism and models of adsorption process on solid/water interface. Acta Sci Circumst 26:1581–1585Google Scholar
  34. 34.
    Zhang M, Eric JR (2003) Removal of B, Cr, Mo and Se from wastewater by incorporation into hydrocalumite and ettringite. Environ Sci Technol 37:2947–2952CrossRefGoogle Scholar
  35. 35.
    Wang Y, Gao H, Yeredla R, Xu H, Abrecht M (2007) Control of pertechnetate sorption on activated by surface functional groups. J Colloid Interface Sci 305:209–217CrossRefGoogle Scholar
  36. 36.
    Matović L, Đukić A, Omerašević M (2017) Removal of pertechnetate from aqueous solution using activated pyrolytic rubber char. J Radioanal Nucl Chem 314:897–905CrossRefGoogle Scholar
  37. 37.
    Vidal M, Rigol A, Gil-García CJ (2009) Soil-radionuclide interactions in Quantif-ication of radionuclide transfer in terrestrial and freshwater environments for radiological assessments. International AtomicEnergy Agency, Vienna, IAEA technical document 1616, p616Google Scholar
  38. 38.
    Muramatsu Y, Uchida S, Sriyotha P, Sriyotha K (1990) Some considerations on the sorption and desorption phenomena of iodide and iodate on soil. Water Air Soil Pollut 49:125–138CrossRefGoogle Scholar
  39. 39.
    Evans GJ, Hammad KA (1995) Radioanalytical studies of iodine behavior in the environment. J Radioanal Nucl Chem 192:239–247CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.School of Nuclear Science and EngineeringNorth China Electric Power UniversityBeijingChina

Personalised recommendations