Skip to main content
Log in

Experimental and numerical investigations of 99TcO4 diffusion in compacted SPV 200 bentonite

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Diffusion characteristics in bentonite are essential to quantify the transport of radionuclides through buffer/backfill materials in waste repositories. This study employs through-diffusion techniques to investigate the diffusion behavior of 99TcO4 through SPV bentonite with various densities. The apparent diffusion coefficients for bentonite densities are estimated using Marquardt–Levenberg optimization algorithm in the HYDRUS-1D model. Based on the experimental and calculation results, 99Tc could be considered as non-sorbing radionuclides. The data obtained in this study provide a valuable reference for the safety assessment of waste repositories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Taiwan Power Company (2009) Preliminary technical feasibility study for final disposal of spent nuclear fuel—2009. Progress report

  2. Ikäheimonen TK, Vartti VP, Ilus E, Mattila J (2002) 99Tc in Fucusand seawater samples in the Finnish coastal area of the Baltic Sea, 1999. J Radioanal Nucl Chem 252:309–313

    Article  Google Scholar 

  3. Chao JH, Tseng CL, Lee CL (2002) Sequential extraction separation for determination of 99Tc in radwastes by ICP-MS. J Radioanal Nucl Chem 251:105–112

    Article  CAS  Google Scholar 

  4. Yu JW, Neretnieks I (1997) Diffusion and sorption properties of radionuclides in compacted bentonite, SKB TR 97-12. Svensk Kärnbränslehantering AB, Sweden

    Google Scholar 

  5. Yang T, Knutsson S, Liu X (2016) Swelling properties and permeability of expandable clays of potential use for nuclear waste disposal. J Earth Sci Geotech Eng 6(2):9–61

    Google Scholar 

  6. Zhao Y, Guo Z, Xu J (2013) 99TcO4 diffusion and sorption in compacted MX-80 bentonite studied by capillary method. J Radioanal Nucl Chem 298:147–152

    Article  CAS  Google Scholar 

  7. Liu DJ, Fan XH (2005) Adsorption behavior of 99Tc on Fe, Fe2O3 and Fe3O4. J Radioanal Nucl Chem 264:691–698

    Article  CAS  Google Scholar 

  8. Wang H, Wu T, Chen J, Fu BF, Zhao XH, Luo Y, Zhao YL, He CH (2015) Effect of humic acid contact time on the diffusion of Re(VII) in MX-80 bentonite. Nucl Sci Tech 26:S10314

    Google Scholar 

  9. Xiao GP, Wu T, Wang H, Zheng Q, Zhang YJ, Pan GX, Shi L, Li JY (2015) Effect of inorganic salts on Se(IV) and Re(VII) diffusions in bentonite. Nucl Sci Tech 26:0503021–0503025

    Google Scholar 

  10. Vinˇsov´a H, Veˇcern´ık P, Jedin´akov´a-Kˇr´ıˇzov´a V (2006) Sorption characteristics of 99Tc onto bentonite material with different additives under anaerobic conditions. Radiochim Acta 94:435–440

    Google Scholar 

  11. Wang X, Tao Z (2004) Diffusion of 99TcO4 in compacted bentonite: effect of pH, concentration, density and contact time. J Radioanal Nucl Chem 260:305–309

    Article  CAS  Google Scholar 

  12. Wang H, Wu T, Chen J, Fu BF, Luo Y, Zhao Y, He CH (2015) Effect of humic acid on the diffusion of ReO4 in GMZ bentonite. J Radioanal Nucl Chem 303:187–191

    Article  CAS  Google Scholar 

  13. Paul C (1997) Compilation of radionuclide sorption coefficients for performance assessment. SKB R-97-13, Svensk Kärnbränslehantering AB, Sweden

  14. García-Gutiérrez M, Cormenzana JL, Missana T, Mingarro M, Molinero J (2006) Overview of laboratory methods employed for obtaining diffusion coefficients in FEBEX compacted bentonite. J Iber Geol 32(1):37–53

    Google Scholar 

  15. Crank J (1975) The mathematics of diffusion, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  16. Lee CP, Tsai SC, Jan YL, Wei YY, Teng SP, Hsu CN (2008) Sorption and diffusion of HTO and cesium in crushed granite compacted to different lengths. J Radioanal Nucl Chem 275:371–378

    Article  CAS  Google Scholar 

  17. Shih YH, Tsai TL, Chen LC, Su TY, Lee CP, Tsai SC (2017) Determination of sorption and diffusion parameters of 99Tc in crushed granite using through-diffusion experiments. J Radioanal Nucl Chem 311:1111–1116

    Article  CAS  Google Scholar 

  18. Šimůnek J, van Genuchten MT (2008) Modeling nonequilibrium flow and transport with HYDRUS. Vadose Zone J 7:782–797

    Article  CAS  Google Scholar 

  19. Hedin Allan (2010) Data report for the safety assessment SR-Site, SKB TR 10-52, December 2010. Svensk Kärnbränslehantering AB, Sweden

    Google Scholar 

  20. Li JY, Dai W, Xiao GP, Wang H, Zhang ZT, Wu T (2012) Pertechnetate diffusion in MX-80 bentonite. J Radioanal Nucl Chem 293:763–767

    Article  CAS  Google Scholar 

  21. Szántó Z, Svingor É, Molnár M, Palcsu L, Futó I, Szűcs Z (2002) Diffusion of 3H, 99Tc, 125I, 36Cl and 85Sr in granite, concrete and bentonite. J Radioanal Nucl Chem 252:133–138

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Nuclear Backend Management Department at Taiwan Power Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I-Hsien Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shih, YH., Lee, IH., Ni, CF. et al. Experimental and numerical investigations of 99TcO4 diffusion in compacted SPV 200 bentonite. J Radioanal Nucl Chem 316, 1081–1089 (2018). https://doi.org/10.1007/s10967-018-5800-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5800-x

Keywords

Navigation