Journal of Radioanalytical and Nuclear Chemistry

, Volume 316, Issue 3, pp 1081–1089 | Cite as

Experimental and numerical investigations of 99TcO4 diffusion in compacted SPV 200 bentonite

  • Yu-Hung Shih
  • I-Hsien Lee
  • Chuen-Fa Ni
  • Tsuey-Lin Tsai
  • Liang-Cheng Chen
  • Chuan-Pin Lee
  • Shih-Chin Tsai
  • Te-Yen Su


Diffusion characteristics in bentonite are essential to quantify the transport of radionuclides through buffer/backfill materials in waste repositories. This study employs through-diffusion techniques to investigate the diffusion behavior of 99TcO4 through SPV bentonite with various densities. The apparent diffusion coefficients for bentonite densities are estimated using Marquardt–Levenberg optimization algorithm in the HYDRUS-1D model. Based on the experimental and calculation results, 99Tc could be considered as non-sorbing radionuclides. The data obtained in this study provide a valuable reference for the safety assessment of waste repositories.


SPV bentonite Through diffusion Apparent diffusion coefficient (DaDistribution coefficient (Kd



This work was financially supported by the Nuclear Backend Management Department at Taiwan Power Company.


  1. 1.
    Taiwan Power Company (2009) Preliminary technical feasibility study for final disposal of spent nuclear fuel—2009. Progress reportGoogle Scholar
  2. 2.
    Ikäheimonen TK, Vartti VP, Ilus E, Mattila J (2002) 99Tc in Fucusand seawater samples in the Finnish coastal area of the Baltic Sea, 1999. J Radioanal Nucl Chem 252:309–313CrossRefGoogle Scholar
  3. 3.
    Chao JH, Tseng CL, Lee CL (2002) Sequential extraction separation for determination of 99Tc in radwastes by ICP-MS. J Radioanal Nucl Chem 251:105–112CrossRefGoogle Scholar
  4. 4.
    Yu JW, Neretnieks I (1997) Diffusion and sorption properties of radionuclides in compacted bentonite, SKB TR 97-12. Svensk Kärnbränslehantering AB, SwedenGoogle Scholar
  5. 5.
    Yang T, Knutsson S, Liu X (2016) Swelling properties and permeability of expandable clays of potential use for nuclear waste disposal. J Earth Sci Geotech Eng 6(2):9–61Google Scholar
  6. 6.
    Zhao Y, Guo Z, Xu J (2013) 99TcO4 diffusion and sorption in compacted MX-80 bentonite studied by capillary method. J Radioanal Nucl Chem 298:147–152CrossRefGoogle Scholar
  7. 7.
    Liu DJ, Fan XH (2005) Adsorption behavior of 99Tc on Fe, Fe2O3 and Fe3O4. J Radioanal Nucl Chem 264:691–698CrossRefGoogle Scholar
  8. 8.
    Wang H, Wu T, Chen J, Fu BF, Zhao XH, Luo Y, Zhao YL, He CH (2015) Effect of humic acid contact time on the diffusion of Re(VII) in MX-80 bentonite. Nucl Sci Tech 26:S10314Google Scholar
  9. 9.
    Xiao GP, Wu T, Wang H, Zheng Q, Zhang YJ, Pan GX, Shi L, Li JY (2015) Effect of inorganic salts on Se(IV) and Re(VII) diffusions in bentonite. Nucl Sci Tech 26:0503021–0503025Google Scholar
  10. 10.
    Vinˇsov´a H, Veˇcern´ık P, Jedin´akov´a-Kˇr´ıˇzov´a V (2006) Sorption characteristics of 99Tc onto bentonite material with different additives under anaerobic conditions. Radiochim Acta 94:435–440Google Scholar
  11. 11.
    Wang X, Tao Z (2004) Diffusion of 99TcO4 in compacted bentonite: effect of pH, concentration, density and contact time. J Radioanal Nucl Chem 260:305–309CrossRefGoogle Scholar
  12. 12.
    Wang H, Wu T, Chen J, Fu BF, Luo Y, Zhao Y, He CH (2015) Effect of humic acid on the diffusion of ReO4 in GMZ bentonite. J Radioanal Nucl Chem 303:187–191CrossRefGoogle Scholar
  13. 13.
    Paul C (1997) Compilation of radionuclide sorption coefficients for performance assessment. SKB R-97-13, Svensk Kärnbränslehantering AB, SwedenGoogle Scholar
  14. 14.
    García-Gutiérrez M, Cormenzana JL, Missana T, Mingarro M, Molinero J (2006) Overview of laboratory methods employed for obtaining diffusion coefficients in FEBEX compacted bentonite. J Iber Geol 32(1):37–53Google Scholar
  15. 15.
    Crank J (1975) The mathematics of diffusion, 2nd edn. Clarendon Press, OxfordGoogle Scholar
  16. 16.
    Lee CP, Tsai SC, Jan YL, Wei YY, Teng SP, Hsu CN (2008) Sorption and diffusion of HTO and cesium in crushed granite compacted to different lengths. J Radioanal Nucl Chem 275:371–378CrossRefGoogle Scholar
  17. 17.
    Shih YH, Tsai TL, Chen LC, Su TY, Lee CP, Tsai SC (2017) Determination of sorption and diffusion parameters of 99Tc in crushed granite using through-diffusion experiments. J Radioanal Nucl Chem 311:1111–1116CrossRefGoogle Scholar
  18. 18.
    Šimůnek J, van Genuchten MT (2008) Modeling nonequilibrium flow and transport with HYDRUS. Vadose Zone J 7:782–797CrossRefGoogle Scholar
  19. 19.
    Hedin Allan (2010) Data report for the safety assessment SR-Site, SKB TR 10-52, December 2010. Svensk Kärnbränslehantering AB, SwedenGoogle Scholar
  20. 20.
    Li JY, Dai W, Xiao GP, Wang H, Zhang ZT, Wu T (2012) Pertechnetate diffusion in MX-80 bentonite. J Radioanal Nucl Chem 293:763–767CrossRefGoogle Scholar
  21. 21.
    Szántó Z, Svingor É, Molnár M, Palcsu L, Futó I, Szűcs Z (2002) Diffusion of 3H, 99Tc, 125I, 36Cl and 85Sr in granite, concrete and bentonite. J Radioanal Nucl Chem 252:133–138CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Chemistry DivisionInstitute of Nuclear Energy ResearchTaoyuan CityTaiwan
  2. 2.Center for Environmental StudiesNational Central UniversityTaoyuan CityTaiwan
  3. 3.Graduate Institute of Applied Geology, National Central UniversityTaoyuan CityTaiwan
  4. 4.Department of Earth SciencesNational Cheng Kung UniversityTainan CityTaiwan
  5. 5.Nuclear Science and Technology Development Center, National Tsing Hua UniversityHsinchuTaiwan

Personalised recommendations