Skip to main content
Log in

In situ green production of Prussian blue/natural porous framework nanocomposites for radioactive Cs+ removal

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Novel Prussian blue/natural porous framework nanocomposites (PB@Apple, PB@Corn stalk and PB@Pomelo peel) were successfully produced in aqueous solution via an in situ γ radiation method. They have layered porous structure with 70–100 nm irregular PB, regular polygonous porous structure with 50–70 nm cubic PB and hierarchical porous structure with 10–20 nm spherical PB, respectively. They exhibit good Cs+ adsorption properties and have maximal Cs+ adsorption capacities of 67.3, 62.1 and 83.8 mg g−1, which can be used to treat radioactive wastewater. This production method is simple, efficient and environmental-friendly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yasunari TJ, Stohl A, Hayano RS, Burkhart JF, Eckhardt S, Yasunari T (2011) Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident. Proc Natl Acad Sci USA 108(49):19530–19534. https://doi.org/10.1073/pnas.1112058108

    Article  CAS  Google Scholar 

  2. Mertz JL, Fard ZH, Malliakas CD, Manos MJ, Kanatzidis MG (2013) Selective removal of Cs+, Sr2+, and Ni2+ by K2xMgxSn3-xS6 (x = 0.5-1) (KMS-2) relevant to nuclear waste remediation. Chem Mater 25(10):2116–2127. https://doi.org/10.1021/cm400699r

    Article  CAS  Google Scholar 

  3. Aguila B, Banerjee D, Nie ZM, Shin Y, Ma SQ, Thallapally PK (2016) Selective removal of cesium and strontium using porous frameworks from high level nuclear waste. Chem Commun 52(35):5940–5942. https://doi.org/10.1039/c6cc00843g

    Article  CAS  Google Scholar 

  4. Yang DJ, Sarina S, Zhu HY, Liu HW, Zheng ZF, Xie MX, Smith SV, Komarneni S (2011) Capture of radioactive cesium and iodide ions from water by using titanate nanofibers and nanotubes. Angew Chem Int Ed 50(45):10594–10598. https://doi.org/10.1002/anie.201103286

    Article  CAS  Google Scholar 

  5. Chang L, Chang SQ, Han W, Chen W, Li Z, Zhang Z, Dai YD, Chen D (2016) Gamma-radiation fabrication of porous permutite/carbon nanobeads/alginic acid nanocomposites and their adsorption properties for Cs+. RSC Adv 6(90):86829–86835. https://doi.org/10.1039/c6ra16973b

    Article  CAS  Google Scholar 

  6. Kobayashi T, Ohshiro M, Nakamoto K, Uchida S (2016) Decontamination of extra-diluted radioactive cesium in Fukushima water using zeolite-polymer composite fibers. Ind Eng Chem Res 55(25):6996–7002. https://doi.org/10.1021/acs.iecr.6b00903

    Article  CAS  Google Scholar 

  7. Liu HM, Yonezawa A, Kumagai K, Sano M, Miyake T (2015) Cs and Sr removal over highly effective adsorbents ETS-1 and ETS-2. J Mater Chem A 3(4):1562–1568. https://doi.org/10.1039/c4ta06170e

    Article  CAS  Google Scholar 

  8. Awual MR, Suzuki S, Taguchi T, Shiwaku H, Okamoto Y, Yaita T (2014) Radioactive cesium removal from nuclear wastewater by novel inorganic and conjugate adsorbents. Chem Eng J 242:127–135. https://doi.org/10.1016/j.cej.2013.12.072

    Article  CAS  Google Scholar 

  9. Kong B, Selomulya C, Zheng GF, Zhao DY (2015) New faces of porous Prussian blue: interfacial assembly of integrated hetero-structures for sensing applications. Chem Soc Rev 44(22):7997–8018. https://doi.org/10.1039/c5cs00397k

    Article  CAS  Google Scholar 

  10. Ishizaki M, Akiba S, Ohtani A, Hoshi Y, Ono K, Matsuba M, Togashi T, Kananizuka K, Sakamoto M, Takahashi A, Kawamoto T, Tanaka H, Watanabe M, Arisaka M, Nankawa T, Kurihara M (2013) Proton-exchange mechanism of specific Cs+ adsorption via lattice defect sites of Prussian blue filled with coordination and crystallization water molecules. Dalton Trans 42(45):16049–16055. https://doi.org/10.1039/c3dt51637g

    Article  CAS  Google Scholar 

  11. Bu FX, Hu M, Zhang W, Meng Q, Xu L, Jiang DM, Jiang JS (2015) Three-dimensional hierarchical Prussian blue composed of ultrathin nanosheets: enhanced hetero-catalytic and adsorption properties. Chem Commun 51(99):17568–17571. https://doi.org/10.1039/c5cc06281k

    Article  CAS  Google Scholar 

  12. Takahashi A, Minami N, Tanaka H, Sue K, Minami K, Parajuli D, Lee KM, Ohkoshi SI, Kurihara M, Kawamoto T (2015) Efficient synthesis of size-controlled open-framework nanoparticles fabricated with a micro-mixer: route to the improvement of Cs adsorption performance. Green Chem 17(8):4228–4233. https://doi.org/10.1039/c5gc00757g

    Article  CAS  Google Scholar 

  13. Lee KM, Kawamoto T, Minami K, Takahashi A, Parajuli D, Kido G, Yoshino K, Tanaka H (2016) Improved adsorption properties of granulated copper hexacyanoferrate with multi-scale porous networks. RSC Adv 6(20):16234–16238. https://doi.org/10.1039/c5ra25388h

    Article  CAS  Google Scholar 

  14. Milyutin VV, Kononenko OA, Mikheev SV, Gelis VM (2010) Sorption of cesium on finely dispersed composite ferrocyanide sorbents. Radiochemistry 52(3):281–283. https://doi.org/10.1134/S1066362210030100

    Article  CAS  Google Scholar 

  15. Ivanets AI, Shashkova IL, Drozdova NV, Davydov DY, Radkevich AV (2014) Recovery of cesium ions from aqueous Solutions with composite sorbents based on tripolite and copper(II) and nickel(II) ferrocyanides. Radiochemistry 56(5):524–528. https://doi.org/10.1134/S1066362214050129

    Article  CAS  Google Scholar 

  16. Yang HJ, Sun L, Zhai JL, Li HY, Zhao Y, Yu HW (2014) In situ controllable synthesis of magnetic Prussian blue/graphene oxide nanocomposites for removal of radioactive cesium in water. J Mater Chem A 2(2):326–332. https://doi.org/10.1039/c3ta13548a

    Article  CAS  Google Scholar 

  17. Yi R, Ye G, Wu FC, Wen MF, Feng XG, Chen J (2014) Highly efficient removal of Cs-137 in seawater by potassium titanium ferrocyanide functionalized magnetic microspheres with multilayer core-shell structure. RSC Adv 4(71):37600–37608. https://doi.org/10.1039/c4ra05397d

    Article  CAS  Google Scholar 

  18. Sasaki T, Tanaka S (2012) Magnetic separation of cesium ion using Prussian blue modified magnetite. Chem Lett 41(1):32–34. https://doi.org/10.1246/cl.2012.32

    Article  CAS  Google Scholar 

  19. Arun T, Prakash K, Joseyphus RJ (2013) Synthesis and magnetic properties of prussian blue modified Fe nanoparticles. J Magn Magn Mater 345:100–105. https://doi.org/10.1016/j.jmmm.2013.05.058

    Article  CAS  Google Scholar 

  20. Turgis R, Arrachart G, Delchet C, Rey C, Barre Y, Pellet-Rostaing S, Guari Y, Larionova J, Grandjean A (2013) An original “click and bind” approach for immobilizing copper hexacyanoferrate nanoparticles on mesoporous silica. Chem Mater 25(21):4447–4453. https://doi.org/10.1021/cm4029935

    Article  CAS  Google Scholar 

  21. Darder M, Gonzalez-Alfaro Y, Aranda P, Ruiz-Hitzky E (2014) Silicate-based multifunctional nanostructured materials with magnetite and Prussian blue: application to cesium uptake. RSC Adv 4(67):35415–35421. https://doi.org/10.1039/c4ra06023g

    Article  CAS  Google Scholar 

  22. Vipin AK, Hu BY, Fugetsu B (2013) Prussian blue caged in alginate/calcium beads as adsorbents for removal of cesium ions from contaminated water. J Hazard Mater 258:93–101. https://doi.org/10.1016/j.jhazmat.2013.04.024

    Article  Google Scholar 

  23. Jang SC, Haldorai Y, Lee GW, Hwang SK, Han YK, Roh C, Huh YS (2015) Porous three-dimensional graphene foam/Prussian blue composite for efficient removal of radioactive Cs-137. Sci Rep UK 5:17510. https://doi.org/10.1038/Srep17510

    Article  CAS  Google Scholar 

  24. Vincent C, Barre Y, Vincent T, Taulemesse JM, Robitzer M, Guibal E (2015) Chitin-Prussian blue sponges for Cs(I) recovery: from synthesis to application in the treatment of accidental dumping of metal-bearing solutions. J Hazard Mater 287:171–179. https://doi.org/10.1016/j.jhazmat.2015.01.041

    Article  CAS  Google Scholar 

  25. Mallampati R, Valiyaveettil S (2013) Apple peels—a versatile biomass for water purification? ACS Appl Mater Interfaces 5(10):4443–4449. https://doi.org/10.1021/am400901e

    Article  CAS  Google Scholar 

  26. He Y, Li J, Luo K, Li L, Chen J, Li J (2016) Engineering reduced graphene oxide aerogel produced by effective γ-ray radiation-induced self-assembly and its application for continuous oil–water separation. Ind Eng Chem Res 55(13):3775–3781. https://doi.org/10.1021/acs.iecr.6b00073

    Article  CAS  Google Scholar 

  27. Chang SQ, Dai YD, Kang B, Han W, Chen D (2009) Gamma-radiation synthesis of silk fibroin coated cdse quantum dots and their biocompatibility and photostability in living cells. J Nanosci Nanotechnol 9(10):5693–5700. https://doi.org/10.1166/jnn.2009.1226

    Article  CAS  Google Scholar 

  28. Chang SQ, Kang B, Dai YD, Zhang HX, Chen D (2011) One-step fabrication of biocompatible chitosan-coated ZnS and ZnS:Mn2+ quantum dots via a gamma-radiation route. Nanoscale Res Lett 6:1–7. https://doi.org/10.1186/1556-276X-6-591

    Article  Google Scholar 

  29. Eaton WA, George P, Hanania GIH (1967) Thermodynamic aspects of the potassium hexacyano-ferrate(III)-(II) system. I. Ion association. J Phys Chem 71(7):2016–2021. https://doi.org/10.1021/J100866a007

    Article  CAS  Google Scholar 

  30. Wan T, Xiong L, Huang RQ, Zhao QH, Tan XM, Qin LL, Hu JY (2014) Structure and properties of corn stalk-composite superabsorbent. Polym Bull 71(2):371–383. https://doi.org/10.1007/s00289-013-1066-1

    Article  CAS  Google Scholar 

  31. Jang J, Lee DS (2016) Magnetic Prussian blue nanocomposites for effective cesium removal from aqueous solution. Ind Eng Chem Res 55(13):3852–3860. https://doi.org/10.1021/acs.iecr.6b00112

    Article  CAS  Google Scholar 

  32. Ismail IM, El-Sourougy MR, Moneim NA, Aly HF (1999) Equilibrium and kinetic studies of the sorption of cesium by potassium nickel hexacyanoferrate complex. J Radioanal Nucl Chem 240(1):59–67. https://doi.org/10.1007/Bf02349137

    Article  CAS  Google Scholar 

  33. Qing YH, Li J, Kang B, Chang SQ, Dai YD, Long Q, Yuan C (2015) Selective sorption mechanism of Cs+ on potassium nickel hexacyanoferrate(II) compounds. J Radioanal Nucl Chem 304(2):527–533. https://doi.org/10.1007/s10967-014-3876-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (11775115, 11105073, 11575086), Fundamental Research Funds for Central Universities (NJ20150022, NP2015207), Jiangsu Cooperative Innovation Fund (BY2013003-09) and project funded by Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuquan Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, S., Chang, L., Han, W. et al. In situ green production of Prussian blue/natural porous framework nanocomposites for radioactive Cs+ removal. J Radioanal Nucl Chem 316, 209–219 (2018). https://doi.org/10.1007/s10967-018-5767-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5767-7

Keywords

Navigation