High-potential use of l-Cysh modified bentonite for efficient removal of U(VI) from aqueous solution

  • Huai Chen
  • Quan Shui Chen
  • Bin Huang
  • Shi Wei Wang
  • Ling Yu Wang


In this work, a brand new organic superficial active sorbent l-Cysteine hydrochloride modified bentonite (LCMB) has been developed and proposed for treatment of contaminated water containing uranium. Correlation between different factors such as pH, contact time, temperature, initial concentration of U(VI) and efficiency of LCMB for uranium absorption are discussed. At uranium content in water from 25 to 250 mg L−1, the sorption capacity for LCMB reached 208.3 mg g−1 that is essentially higher in comparison with other sorbents and notably improved from 77 mg g−1 after modification.


Bentonite l-Cysteine hydrochloride Uranium Adsorption Sorbent 



This work was supported by the Foundation of Key Laboratory for Radioactive Geology and Exploration Technology, Fundamental Science for National Defense, the International Scientific and Technological Cooperation Projects (2015DFR61020), Science and technology project of Jiangxi Provincial Department of Education (GJJ14468).


  1. 1.
    Gavrilescu M, Pavel LV, Cretescu I (2009) Characterization and remediation of soils contaminated with uranium. J Hazard Mater 163:475–510CrossRefGoogle Scholar
  2. 2.
    Vandenhove H, Van HM, Wouters K, Wannijn J (2007) Can we predict uranium bioavailability based on soil parameters? Part 1: effect of soil parameters on soil solution uranium concentration. Environ Pollut 145:587–595CrossRefGoogle Scholar
  3. 3.
    USEPA (1996) Integrated risk information system (IRIS), electronic database. USEPA, Washington, DCGoogle Scholar
  4. 4.
    Ling L, Zhang WX (2015) Enrichment and encapsulation of uranium with iron nanoparticle. J Am Chem Soc 137:2788–2791CrossRefGoogle Scholar
  5. 5.
    Wang F, Liu Q, Li R, Li Z, Zhang H, Liu L et al (2016) Selective adsorption of uranium(VI) onto prismatic sulfides from aqueous solution. Colloids Surf A 490:215–221CrossRefGoogle Scholar
  6. 6.
    Mellah A, Chegrouche S, Barkat M (2007) The precipitation of ammonium uranyl carbonate (AUC): thermodynamic and kinetic investigations. Hydrometallurgy 85:163–171CrossRefGoogle Scholar
  7. 7.
    Agrawal YK, Shrivastav P, Menon SK (2000) Solvent extraction, separation of uranium (VI) with crown ether. Sep Purif Technol 20:177–183CrossRefGoogle Scholar
  8. 8.
    Favre-Réguillon A, Lebuzit G, Murat D, Foos J, Mansour C, Draye M (2008) Selective removal of dissolved uranium in drinking water by nanofiltration. Water Res 42:1160–1166CrossRefGoogle Scholar
  9. 9.
    Sureshkumar MK, Das D, Mallia MB, Gupta PC (2010) Adsorption of uranium from aqueous solution using chitosan-tripolyphosphate (CTPP) beads. J Hazard Mater 184:65–72CrossRefGoogle Scholar
  10. 10.
    Wang YQ, Zhang ZB, Liu YH, Cao XH, Liu YT, Li Q (2012) Adsorption of U(VI) from aqueous solution by the carboxyl-mesoporous carbon. Chem Eng J 198–199:246–253CrossRefGoogle Scholar
  11. 11.
    Wen L, Xiao Z, Wang T, Zhao D, Ni J (2016) Adsorption of U(VI) by multilayer titanate nanotubes: effects of inorganic cations, carbonate and natural organic matter. Chem Eng J 286:427–435CrossRefGoogle Scholar
  12. 12.
    Khraisheh MAM, Al-Degs YS, Mcminn WAM (2004) Remediation of wastewater containing heavy metals using raw and modified diatomite. Chem Eng J 99:177–184CrossRefGoogle Scholar
  13. 13.
    Echeverría JC, Churio E, Garrido JJ (2002) Retention mechanisms of Cd on illite. Clays Clay Miner 50:614–623CrossRefGoogle Scholar
  14. 14.
    Brigatti MF, Lugli C, Poppi L (2000) Kinetics of heavy-metal removal and recovery in sepiolite. Appl Clay Sci 16:45–57CrossRefGoogle Scholar
  15. 15.
    Donat R, Akdogan A, Erdem E, Cetisli H (2005) Thermodynamics of Pb2+ and Ni2+ adsorption onto natural bentonite from aqueous solutions. J Colloid Interface Sci 286:43–52CrossRefGoogle Scholar
  16. 16.
    Liu X, Prikryl R, Pusch R (2011) THMC-testing of three expandable clays of potential use in HLW repositories. Appl Clay Sci 52:419–427CrossRefGoogle Scholar
  17. 17.
    Aytas S, Yurtlu M, Donat R (2009) Adsorption characteristic of U(VI) ion onto thermally activated bentonite. J Hazard Mater 172:667–674CrossRefGoogle Scholar
  18. 18.
    Prasad PV, Rao TKV, Rao KR, Kamal CS, Samuel T (2015) Studies on influence of Cd2+ ions in unidirectional growth and characterization of l-Cysteine hydrochloride monohydrate single crystals. Spectrochim Acta Part A 136:1950–1954CrossRefGoogle Scholar
  19. 19.
    Wang G, Liu J, Wang X, Xie Z, Deng N (2009) Adsorption of uranium (VI) from aqueous solution onto cross-linked chitosan. J Hazard Mater 168:1053–1058CrossRefGoogle Scholar
  20. 20.
    Yan LG, Qin LL, Yu HQ, Li S, Shan RR, Du B (2015) Adsorption of acid dyes from aqueous solution by CTMAB modified bentonite: kinetic and isotherm modeling. J Mol Liq 211:1074–1081CrossRefGoogle Scholar
  21. 21.
    Lee SY, Kim SJ (2002) Adsorption of naphthalene by HDTMA modified kaolinite and halloysite. Appl Clay Sci 22:55–63CrossRefGoogle Scholar
  22. 22.
    Norrish K, Quirk JP (1954) Crystalline swelling of montmorillonite: use of electrolytes to control swelling. Nature 173:255–256CrossRefGoogle Scholar
  23. 23.
    Jalbani N, Soylak M (2014) Spectrophotometric determination of uranium using chromotrope 2R complexes. J Radioanal Nucl Chem 301:263–268CrossRefGoogle Scholar
  24. 24.
    Soylak M, Khan M, Alosmanov R, Shah J, Jan MR (2015) Solid phase extraction of uranium(VI) on phosphorus-containing polymer grafted 4-aminoantipyrine. J Radioanal Nucl Chem 308:955–963CrossRefGoogle Scholar
  25. 25.
    Soylak M, Khan M, Yilmaz E (2016) Switchable solvent based liquid phase microextraction of uranium in environmental samples: a green approach. Anal Methods 8:979–986CrossRefGoogle Scholar
  26. 26.
    Khan MH, Warwick P, Evans N (2006) Spectrophotometric determination of uranium with arsenazo-III in perchloric acid. Chemosphere 63:1165–1169CrossRefGoogle Scholar
  27. 27.
    Duo-qiang Fan, Qiao-hui Li, Ping Liu et al (2011) Sorption of Th(IV) on Na-bentonite: effects of pH, ionic strength, humic substances and temperature. Chem Eng J 172:898–905CrossRefGoogle Scholar
  28. 28.
    Clifford D, Zhang Z (1994) Modifying ion exchange for combined removal of uranium and radium. Journal 86:214–227Google Scholar
  29. 29.
    Spear JR, Figueroa LA, Honeyman BD (1999) Modeling the removal of uranium U(VI) from aqueous solutions in the presence of sulfate reducing bacteria. Environ Sci Technol 33:2667–2675CrossRefGoogle Scholar
  30. 30.
    Bai J, Li Z, Fan F, Wu X, Tian W, Yin X et al (2014) Biosorption of uranium by immobilized cells of Rhodotorula glutinis. J Radioanal Nucl Chem 299:1517–1524CrossRefGoogle Scholar
  31. 31.
    Ghasemi M, Keshtkar AR, Dabbagh R, Jaber SS (2011) Biosorption of uranium(VI) from aqueous solutions by Ca-pretreated Cystoseira indica alga: breakthrough curves studies and modeling. J Hazard Mater 189:141–149CrossRefGoogle Scholar
  32. 32.
    Deb AKS, Ilaiyaraja P, Ponraju D, Venkatraman B (2012) Diglycolamide functionalized multi-walled carbon nanotubes for removal of uranium from aqueous solution by adsorption. J Radioanal Nucl Chem 291:877–883CrossRefGoogle Scholar
  33. 33.
    Singhal RK, Basu H, Pimple MV, Manisha V, Basan MKT, Reddy AVR (2013) Spectroscopic determination of U(VI) species sorbed by the Chlorella (Chlorella pyrenoidosa) fresh water algae. J Radioanal Nucl Chem 298:587–592CrossRefGoogle Scholar
  34. 34.
    Anirudhan TS, Rijith S (2012) Synthesis and characterization of carboxyl terminated poly(methacrylic acid) grafted chitosan/bentonite composite and its application for the recovery of uranium(VI) from aqueous media. J Environ Radioact 106:8–19CrossRefGoogle Scholar
  35. 35.
    Zhao G, Wen T, Yang X, Yang S, Liao J, Hu J et al (2012) Preconcentration of U(VI) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalton Trans 41:6182–6188CrossRefGoogle Scholar
  36. 36.
    Tian G, Geng J, Jin Y, Wang C, Li S, Chen Z et al (2011) Sorption of uranium(VI) using oxime-grafted ordered mesoporous carbon CMK-5. J Hazard Mater 190:442–450CrossRefGoogle Scholar
  37. 37.
    Bryant DE, Stewart DI, Kee TP, Barton CS (2003) Development of a functionalized polymer-coated silica for the removal of uranium from groundwater. Environ Sci Technol 37:4011CrossRefGoogle Scholar
  38. 38.
    Zhao Y, Li J, Zhao L, Zhang S, Huang Y, Wu X et al (2014) Synthesis of amidoxime-functionalized Fe3O4@SiO2 core–shell magnetic microspheres for highly efficient sorption of U(VI). Chem Eng J 235:275–283CrossRefGoogle Scholar
  39. 39.
    Basu H, Singhal RK, Pimple MV, Reddy AVR (2014) Synthesis and characterization of silica microsphere and their application in removal of uranium and thorium from water. Int J Environ Sci Technol 12:1899–1906CrossRefGoogle Scholar
  40. 40.
    Li X, Ding C, Liao J, Du L, Sun Q, Yang J et al (2016) Bioaccumulation characterization of uranium by a novel Streptomyces sporoverrucosus dwc-3. J Environ Sci (China) 41:162–171CrossRefGoogle Scholar
  41. 41.
    Basu H, Singhal RK, Pimple MV, Manisha V, Bassan MKT, Reddy AVR et al (2011) Development of naturally occurring siliceous material for the preferential removal of thorium from U-Th from aquatic environment. J Radioanal Nucl Chem 289:231–237CrossRefGoogle Scholar
  42. 42.
    Chen B, Wang J, Kong L, Mai X, Zheng N, Zhong Q et al (2017) Adsorption of uranium from uranium mine contaminated water using phosphate rock apatite (PRA): isotherm, kinetic and characterization studies. Colloids Surf A 520:612–621CrossRefGoogle Scholar
  43. 43.
    Das D, Sureshkumar MK, Koley S, Mithal N, Pillai CGS (2010) Sorption of uranium on magnetite nanoparticles. J Radioanal Nucl Chem 285:447–454CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Huai Chen
    • 1
  • Quan Shui Chen
    • 1
  • Bin Huang
    • 1
  • Shi Wei Wang
    • 1
  • Ling Yu Wang
    • 1
  1. 1.Fundamental Science on Radioactive Geology and Exploration Technology LaboratoryEast China University of TechnologyNanchangChina

Personalised recommendations