Experimental measurements and theoretical calculations for proton, deuteron and α-particle induced nuclear reactions on calcium: special relevance to the production of 43,44Sc

  • M. Alabyad
  • Gehan Y. Mohamed
  • H. E. Hassan
  • S. Takács
  • F. Ditrói
Article
  • 27 Downloads

Abstract

The cross sections of the proton, deuteron and α-particle induced nuclear reactions on Ca were determined experimentally up to 20 MeV. The obtained experimental data were validated theoretically using EMPIRE-3.2 and TALYS-1.6. The production yields of 43Sc and 44m,gSc radioisotopes were calculated and discussed in view of the reported experimental data. Of all the production routes, the 44Ca(p,n)44m,gSc and 43Ca(d,n)44m,gSc showed highest yields of 1206 MBq/µA.h (15 → 5 MeV) and 204 MBq/µA.h (8 → 0 MeV), respectively. The α-particles induced reactions on natCa or 40Ca were found to be suitable for producing considerable activity of 43Sc at energy range 8–20 MeV.

Keywords

43Sc 44m,gSc radionuclides Model codes natCa(p,x)44m,gSc reactions Excitation function Production yield 

Notes

Acknowledgements

This work was supported and funded by the Institute for Nuclear Research (ATOMKI), Debrecen, Hungarian Academy of Science in Hungary, and the Egyptian Academy of Scientific Research & Technology (ASRT) in Cairo, Egypt. The authors acknowledge the staff and operators of Debrecen cyclotron for their help in performing irradiations. The coauthor M. Al-Abyad greatly appreciates the hospitality and support during his visit to the Institute for Nuclear Research (ATOMKI), Debrecen, Hungary.

References

  1. 1.
    UC Berkeley’s Table of the Isotopes, http://ie.lbl.gov/education/isotopes.htm
  2. 2.
    Severin G, Engle J, Valdovinos H, Barnhart T, Nickles R (2012) Cyclotron produced 44gSc from natural calcium. Appl Radiat Isot 70:1526–1530CrossRefGoogle Scholar
  3. 3.
    Severin GW, Gagnon K, Engle JW, Valdovinos HF, Barnhart TE, Nickles RJ (2012) 44gSc from metal calcium targets for PET. AIP Conf Proc 1509:125–128CrossRefGoogle Scholar
  4. 4.
    Valdovinos HF, Hernandez R, Barnhart TE, Graves S, Cai W, Nickles RJ (2015) Separation of cyclotron-produced 44Sc from a natural calcium target using a dipentylpentyl phosphonate functionalized extraction resin. Appl Radiat Isot 95:23–29CrossRefGoogle Scholar
  5. 5.
    Szkliniarz K, Sitarz M, Walczak R, Jastrzębski J, Bilewicz A, Choiński J, Jakubowski A, Majkowska A, Stolarz A, Trzcińska A, Zipper W (2016) Production of medical Sc radioisotopes with an alpha particle beam. Appl Radiat Isot 118:182–189CrossRefGoogle Scholar
  6. 6.
    Alliot C, Kerdjoudj R, Michel N, Haddad F, Huclier-Markai S (2015) Cyclotron production of high purity 44m,44Sc with deuterons from 44CaCO3 targets. Nucl Med Biol 42:524–529CrossRefGoogle Scholar
  7. 7.
    Hernandez R, Valdovinos HF, Yang Y, Chakravarty R, Hong H, Barnhart TE, Cai W (2014) 44Sc: an attractive isotope for peptide-based PET imaging. Mol Pharm 11:2954–2961CrossRefGoogle Scholar
  8. 8.
    Koumarianou E, Pawlak D, Korsak A, Mikolajczak R (2011) Comparison of receptor affinity of natSc-DOTA-TATE versus natGa-DOTA-TATE. Nucl Med Rev Cent East Eur 14:85–89CrossRefGoogle Scholar
  9. 9.
    Hoehr C, Oehlke E, Benard F, Lee CJ, Hou X, Badesso B, Ferguson S, Miao Q, Yang H, Buckley K, Hanemaayer V, Zeisler S, Ruth T, Celler A, Schaffer P (2014) 44gSc production using a water target on a 13 MeV cyclotron. Nucl Med Biol 41:401–406CrossRefGoogle Scholar
  10. 10.
    Huclier-Markai S, Sabatie A, Ribet S, Kubicek V, Paris M, Vidaud C, Hermann P, Cutler C (2011) Chemical and biological evaluation of scandium (III)-polyamino- polycarboxylate complexes as potential PET agents and radiopharmaceuticals. Radiochim Acta 99:653–662CrossRefGoogle Scholar
  11. 11.
    Koumarianou E, Loktionova N, Fellner M, Roesch F, Thews O, Pawlak D, Archimandritis S, Mikolajczak R (2012) Sc-44-DOTA-BN [2-14] NH2 in comparison to Ga-68-DOTA-BN[2-14]NH2 in pre-clinical investigation. Is Sc-44 a potential radionuclide for PET. Appl Radiat Isot 70:2669–2676CrossRefGoogle Scholar
  12. 12.
    Müller C, Bunka M, Reber J, Fischer C, Zhernosekov K, Türler A, Schibli R (2013) Promises of cyclotron-produced 44Sc as a diagnostic match for trivalent b2-emitters. In vitro and in vivo study of a 44Sc-DOTA-folate conjugate. J Nucl Med 54:2168–2174CrossRefGoogle Scholar
  13. 13.
    Hassan HE, Qaim SM, Shubin YuN, Azzam A, Morsy M, Coenen HH (2004) Experimental studies and nuclear model calculations on proton-induced reactions on natSe, 76Se and 77Se with particular reference to the production of the medically interesting radionuclides 76Br and 77Br. Appl Radiat Isot 60:899CrossRefGoogle Scholar
  14. 14.
    Andersen HH, Ziegler JF (1977) Hydrogen stopping powers and ranges in all elements. In: The stopping and ranges of ions in matter, vol 2. Pergamon Press, New YorkGoogle Scholar
  15. 15.
    Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in solids. In: The stopping and ranges of ions in matter, vol 1. Pergamon Press, New YorkGoogle Scholar
  16. 16.
    Ziegler JF, Ziegler MD, Biersack JP, SRIM 2006 code. http://www.srim.org/SRIM
  17. 17.
    Khandaker MU, Kim K, Lee M, Kim K, Kim G, Otuka N (2012) Investigations of89Y(p,x)86,88,89gZr,86 m + g,87 g,87 m,88gY,85gSr, and84gRb nuclear processes up to 42 MeV. Nucl Instrum Method B 271:72–81CrossRefGoogle Scholar
  18. 18.
    Gul K, Hermanne A, Mustafa MG, Nortier FM, Oblozinsky P, Qaim SM, Scholten B, Shubin YN, Takács S, Tárkányi F, Zhuang Y (2001) Charged particle cross-section data base for medical radioisotope production. Diagnostic radioisotopes and monitor reactions. In: Proceedings of IAEA-TECDOC-1211, Vienna. https://www-nds.iaea.org/medical/monitor_reactions.html
  19. 19.
    Koning AJ, Hilaire S, Duijvestijn MC (2007) TALYS-1.0. In: Bersillon O, Gunsing F, Bauge E, Jacqmin R, Leray S (eds) Proc. of the Int. Conf. Nucl. Data for Sci. and Tech. (Nice, France, 22–27 April, 2007) p 211Google Scholar
  20. 20.
    Capote R, Herman M, Oblozinsky P, Young PG, Goriely S, Belgya T, Ignatyuk AV, Koning AJ, Hilaire S, Plujko V, Avrigeanu M, Bersillon O, Chadwick MB, Fukahori T, Kailas S, Kopecky J, Maslov VM, Reffo G, Sin M, Soukhovitskii E, Talou P, Yinlu H, Zhigang G (2009) RIPL—reference input parameter library for calculation of nuclear reactions and nuclear data evaluation. Nucl Data Sheets 110:3107CrossRefGoogle Scholar
  21. 21.
    Herman M, Capote R, Sin M, Trkov A, Carlson BV, Oblozˇinsky´ P, Mattoon CM, Wienke H, Hoblit S, Cho Y-S, Nobre GPA, Plujko V, Zerkin V (2013) EMPIRE-3.2 “Malta” modular system for nuclear reaction calculations and nuclear data evaluation, INDC(NDS)-0603,BNL-101378-2013Google Scholar
  22. 22.
    Dasso CH, Landowne S (1987) Comp Phys Commun 46:187CrossRefGoogle Scholar
  23. 23.
    Tamura T, Udagawa T, Lenske H (1982) Phys Rev C 26:379CrossRefGoogle Scholar
  24. 24.
    Khandaker MU, Kim K, Kim G, Otuka N (2010) Cyclotron production of the 105,106mAg, 100,101Pd, 100,101m,105Rh radionuclides by natPd(p,x) nuclear processes. Nucl Instrum Method B 268:2303–2311CrossRefGoogle Scholar
  25. 25.
    Michel R, Bodemann R, Busemann H, Daunke R, Gloris M, Lange HJ, Klug B, Krins A, Leya I, Luepke M, Neumann S, Reinhardt H, Schnatz-Buettgen M, Herpers U, Schiekel Th, Sudbrock F, Holmqvist B, Conde H, Malmborg P, Suter M, Dittrich-Hannen B, Kubik PW, Sinal HA, Filges D (1997) Cross sections for the production of residual nuclides by low and medium energy protons from the target elements C, N, O, Mg, Al, Si, Ca, Ti, V, Mn, Fe Co, Ni, Cu, Sr, Y, Zr, Nb, Ba and Au. Nucl Instrum Method B 129:53CrossRefGoogle Scholar
  26. 26.
    Mitchell LW, Anderson MR, Kennett SR, Sargood DG (1982) Cross sections and thermonuclear reaction rates for 42Ca(p,γ)43Sc, 44Ca(p,γ)45Sc, 44Ca(p,n)44Sc and 45Sc(p,n)45Ti. Nucl Phys A 380:318CrossRefGoogle Scholar
  27. 27.
    Krajewskij S, Cydzik I, Abbas K, Bulgheroni A, Simonelli F, Holzwarth U, Bilewicz A (2013) Cyclotron production of 44Sc for clinical application. Radiochim Acta 101:333CrossRefGoogle Scholar
  28. 28.
    Levkovskij VN (1991) Activation cross section nuclides of average masses (A = 40–100) by protons and alpha-particles with average energies (E = 10–50 MeV), MoscowGoogle Scholar
  29. 29.
    De Waal TJ, Peisach M, Pretorius R (1971) Activation cross sections for proton-induced reactions on calcium isotopes up to 5.6-MeV. J Inorg Nucl Chem 33:2783CrossRefGoogle Scholar
  30. 30.
    Qaim SM, Sudár S, Scholten B, Koning AJ, Coenen HH (2014) Evaluation of excitation functions of 100Mo(p,d + pn)99Mo and 100Mo(p,2n)99mTc reactions: estimation of long-lived Tc-impurity and its implication on the specific activity of cyclotron-produced 99mTc. Appl Radiat Isot 85:101–113CrossRefGoogle Scholar
  31. 31.
    De Waal TJ, Peisach M, Pretorius R (1971) Activation cross sections for deuteron-induced reactions on calcium isotopes up to 5.5 MeV. Radiochim Acta 15 (3):123Google Scholar
  32. 32.
    Duchemin C, Guertin A, Haddad F, Michel N, Métivier V (2015) Production of 44mSc and 44gSc with deuterons on 44Ca: cross section measurements and production yield calculations. Phys Med Biol 60:6847CrossRefGoogle Scholar
  33. 33.
    Azzam A, Said SA, Al-abyad M (2014) Evaluation of different production routes for the radiomedical isotope 203Pb using TALYS1.4 and EMPIRE3.1 code calculations. Appl Radiat Isot 91:109–113CrossRefGoogle Scholar
  34. 34.
    Howard AJ, Jensen HB, Rios M, Fowler WA, Zimmerman BA (1974) Measurement and theoretical analysis of some reaction rates of interest in silicon burning. Astrophys J 188:131CrossRefGoogle Scholar
  35. 35.
    Walczak R, Krajewskij S, Szkliniarz K, Sitarz M, Abbas K, Choiński J, Jakubowski A, Jastrzębski J, Majkowska A, Simonelli F, Stolarz A, Trzcińska A, Zipper W, Bilewicz A (2015) Cyclotron production of 43Sc for PET imaging. EJNMMI Phys 2:33CrossRefGoogle Scholar
  36. 36.
    Alliot C, Audouin N, Barbet J, Bonraisin A, Bossé V, Bourdeau C, Bourgeois M, Duchemin C, Guertin A, Haddad F, Huclier-Markai S, Kerdjoudj R, Laizé J, Métivier V, Michel N, Mokili M, Pageau M, Vidal A (2015) Is there an interest to use deuteron beams to produce non-conventional radionuclides?, Reviews in Medicine 2. https://www.frontiersin.org/articles/10.3389/fmed.2015.00031/full
  37. 37.
    Luo J, Liu R, Jiang L, Liu Z, Sun G, Ge S (2013) Cross-sections of 45Sc(n,2n)44m,gSc reaction from the reaction threshold to 20 MeV. Radiochim Acta 10:607Google Scholar
  38. 38.
    Bostan M, Qaim SM (1994) Excitation functions of threshold reactions on 45Sc and 55Mn induced by 6–13 MeV neutrons. Phys Rev C 49:266CrossRefGoogle Scholar
  39. 39.
    Bailey S (1961) Yield ratios for the isomeric pair 44m,44gSc formed in (α, αn) and (α,n) reactions. Phys Rev 123:579CrossRefGoogle Scholar
  40. 40.
    Filosofov DV, Loktionova NS, Rösch F (2010) A 44Ti/44Sc radionuclide generator for potential nuclear-medical application of 44Sc-based PET-radiopharmaceuticals. Radiochim Acta 98:149–156CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • M. Alabyad
    • 1
  • Gehan Y. Mohamed
    • 1
  • H. E. Hassan
    • 1
  • S. Takács
    • 2
  • F. Ditrói
    • 2
  1. 1.Nuclear Physics Department, Cyclotron Facility, Nuclear Research CentreAtomic Energy AuthorityCairoEgypt
  2. 2.Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI)DebrecenHungary

Personalised recommendations