Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 2, pp 1463–1470 | Cite as

Xylenol orange probe-based spectroscopic insight into the interaction between strontium (II) and bovine serum albumin



The mechanism of the interaction between Sr(II) and bovine serum albumin (BSA) in aqueous solution was investigated using xylenol orange (XO) as a probe by UV–Vis absorption and fluorescence spectroscopy. Binding ratios of n Sr(II):n XO = 1:1 and n Sr(II):n XO:n BSA = 1:1:1 (pH 7.4) were confirmed. Static quenching occurred between Sr(II)-XO and BSA because of hydrophobic force. Based on the Förster theory of nonradioactive energy transfer, the reactive distance and energy transfer efficiency between Sr(II)-XO and BSA at room temperature were determined. The thermodynamic data obtained indicate that the formation of Sr(II)-XO–BSA complex is spontaneous and driven by entropy and enthalpy.


Sr(II) Bovine serum albumin Interaction mechanism UV–Vis spectroscopy Fluorescence spectroscopy Xylenol orange 



Funding for this work was supported by the PhD Foundation of Southwest University of Science and Technology (granted NO. 13zx7132).


  1. 1.
    Yasunari TJ, Stohl A, Hayano RS, Burkhart JF, Eckhardt S, Yasunari T (2011) Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident. Proc Natl Acad Sci USA 108:19530–19534CrossRefGoogle Scholar
  2. 2.
    Manolopoulou M, Vagena E, Stoulos S, Ioannidou A, Papastefanou C (2011) Radioiodine and radiocesium in Thessaloniki, Northern Greece due to the Fukushima nuclear accident. J Environ Radioact 102:796–797CrossRefGoogle Scholar
  3. 3.
    Macaskie LE (1991) The application of biotechnology to the treatment of wastes produced from the nuclear fuel cycle: biodegradation and bioaccumulation as a means of treating radionuclide-containing streams. Crit Rev Biotechnol 11:41–112CrossRefGoogle Scholar
  4. 4.
    Nishiyama Y, Hanafusa T, Yamashita J, Yamamoto Y, Ono T (2016) Adsorption and removal of strontium in aqueous solution by synthetic hydroxyapatite. J Radioanal Nucl Chem 307:1279–1285CrossRefGoogle Scholar
  5. 5.
    Zakrzewska-Trznadel G, Harasimowicz M, Chmielewski AG (2001) Membrane processes in nuclear technology-application for liquid radioactive waste treatment. Sep Purif Technol 22:617–625CrossRefGoogle Scholar
  6. 6.
    Chaalal O, Zekri AY, Soliman AM (2015) A novel technique for the removal of strontium from water using thermophilic bacteria in a membrane reactor. J Ind Eng Chem 21:822–827CrossRefGoogle Scholar
  7. 7.
    Meek K, Derry L, Sparks J, Cathles L (2016) 87Sr/86Sr, Ca/Sr, and Ge/Si ratios as tracers of solute sources and biogeochemical cycling at a temperate forested shale catchment, central Pennsylvania, USA. Chem Geol 445:84–102CrossRefGoogle Scholar
  8. 8.
    Huang M, Hill RG, Rawlinson SCF (2016) Strontium (Sr) elicits odontogenic differentiation of human dental pulp stem cells (hDPSCs): a therapeutic role for Sr in dentine repair? Acta Biomater 38:201–211CrossRefGoogle Scholar
  9. 9.
    Liu X, Sun J, Qiu K, Yang Y, Pu Z, Li L, Zheng Y (2016) Effects of alloying elements (Ca and Sr) on microstructure, mechanical property and in vitro corrosion behavior of biodegradable Zn-1.5 Mg alloy. J Alloy Compd 664:444–452CrossRefGoogle Scholar
  10. 10.
    Tao Y, Xu FW, Cao SH, Li JZ, Xu FD (2000) Development of hygienic standard for Strontium in drinking water. China Public Health 16:615Google Scholar
  11. 11.
    He XM, Carter DC (1992) Atomic structure and chemistry of human serum albumin. Nature 358:209–215CrossRefGoogle Scholar
  12. 12.
    Poureshghi F, Ghandforoushan P, Safarnejad A, Soltani S (2017) Interaction of an antiepileptic drug, lamotrigine with human serum albumin (HSA): application of spectroscopic techniques and molecular modeling methods. J Photochem Photobiol B 166:187–192CrossRefGoogle Scholar
  13. 13.
    Kosa T, Maruyama T, Otagiri M (1997) Species differences of serum albumins: I. Drug binding sites. Pharm Res 14:1607–1612CrossRefGoogle Scholar
  14. 14.
    Arrutia F, Puente Á, Riera FA, Menéndez C, González UA (2016) Influence of heat pre-treatment on BSA tryptic hydrolysis and peptide release. Food Chem 202:40–48CrossRefGoogle Scholar
  15. 15.
    Han XL, Tian FF, Ge YS, Jiang FL, Lai L, Li DW, Yu QL, Wang J, Lin C, Liu Y (2012) Spectroscopic, structural and thermodynamic properties of chlorpyrifos bound to serum albumin: a comparative study between BSA and HSA. J Photochem Photobiol B 109:1–11CrossRefGoogle Scholar
  16. 16.
    Burilov V, Mironova DA, Ibragimova RR, Solovieva SE, Antipin IS (2016) Interactions of new bis-ammonium thiacalix [4] arene derivatives in 1, 3-alternate stereoisomeric form with bovine serum albumin. BioNanoScience 6:427–430CrossRefGoogle Scholar
  17. 17.
    Liu XF, Xia YM, Fang Y (2005) Effect of metal ions on the interaction between bovine serum albumin and berberine chloride extracted from a traditional Chinese Herb coptis chinensis franch. J Inorg Biochem 99:1449–1457CrossRefGoogle Scholar
  18. 18.
    Wang F, Yang ZL, Zhou YZ, Weng SF, Zhang L, Wu JG (2006) Influence of metal ions on phosphatidylcholine–bovine serum albumin model membrane, an FTIR study. J Mol Struct 794:1–11CrossRefGoogle Scholar
  19. 19.
    Ananth KM, Rajaram R, Ramasami T (2000) Stabilization of chromium (V) species in bovine serum albumin adduct. Biochem Bioph Res Commun 273:1138–1143CrossRefGoogle Scholar
  20. 20.
    Ohyoshi E, Hamada Y, Nakata K, Kohata S (1999) The interaction between human and bovine serum albumin and zinc studied by a competitive spectrophotometry. J Inorg Biochem 75:213–218CrossRefGoogle Scholar
  21. 21.
    Ohyoshi E, Kohata S (1993) The binding of Yb(III) and Gd(III) to bovin serum albumin by a competitive spectrophotometry. J Inorg Biochem 52:157–163CrossRefGoogle Scholar
  22. 22.
    Esteghamat-Panah R, Hadadzadeh H, Farrokhpour H, Mortazavi M, Amirghofran Z (2017) A mononuclear Ru (II) complex with meloxicam: DNA-and BSA-binding, molecular modeling and anticancer activity against human carcinoma cell lines. Inorg Chim Acta 454:184–196CrossRefGoogle Scholar
  23. 23.
    Pekel N, Güven O (1999) Investigation of complex formation between poly (N-vinyl imidazole) and various metal ions using the molar ratio method. Colloid Polym Sci 277:570–573CrossRefGoogle Scholar
  24. 24.
    Mohammadzadeh-Aghdash H, Dolatabadi JEN, Dehghan P, Panahi-Azar V, Barzegar A (2017) Multi-spectroscopic and molecular modeling studies of bovine serum albumin interaction with sodium acetate food additive. Food Chem 228:265–269CrossRefGoogle Scholar
  25. 25.
    Afsharan H, Hasanzadeh M, Shadjou N, Jouyban A (2016) Interaction of some cardiovascular drugs with bovine serum albumin at physiological conditions using glassy carbon electrode: a new approach. Mater Sci Eng C 65:97–108CrossRefGoogle Scholar
  26. 26.
    Chmyrov A, Sandén T, Widengren J (2010) Iodide as a fluorescence quencher and promoter mechanisms and possible implications. J Phys Chem B. 114:11282–11291CrossRefGoogle Scholar
  27. 27.
    Du W, Teng T, Zhou CC, Xi L, Wang JZ (2012) Spectroscopic studies on the interaction of bovine serum albumin with ginkgolic acid: binding characteristics and structural analysis. J Lumin 132:1207–1214CrossRefGoogle Scholar
  28. 28.
    Lakowicz JR, Masters BR (2008) Principles of fluorescence spectroscopy. J Biomed Opt 13:029901–029902CrossRefGoogle Scholar
  29. 29.
    Lakowicz JR (2006) In: Lakowicz JR (ed) Principles of fluorescence spectroscopy, 3rd edn. Springer, BostonCrossRefGoogle Scholar
  30. 30.
    Dolatabadi JEN, Kashanian S (2010) A review on DNA interaction with synthetic phenolic food additives. Food Res Int 43:1223–1230CrossRefGoogle Scholar
  31. 31.
    Han MX, Zou XP, Li YQ (2009) Research on the Interaction between Hg(II) and Bovine Serum Albumin by Fluorescence Spectroscopy. Chin J Spectrosc Lab 26:173–176Google Scholar
  32. 32.
    Tobitani A, Ross-Murphy SB (1997) Heat-induced gelation of globular proteins. 1. Model for the effects of time and temperature on the gelation time of BSA gels. Macromolecules 30:4845–4854CrossRefGoogle Scholar
  33. 33.
    Baptista MS, Indig GL (1998) Effect of BSA binding on photophysical and photochemical properties of triarylmethane dyes. J Phys Chem B 102:4678–4688CrossRefGoogle Scholar
  34. 34.
    Förster T (1948) Zwischenmolekulare energiewanderung und fluoreszenz. Ann Phys-Berlin 437:55–75CrossRefGoogle Scholar
  35. 35.
    Huang JH, Ma HM, Sun ST, Chen X, Dong HX, Wei Q (2006) Study on the mechanism of interaction between TH-PF-Mo(VI) complex and bovine serum albumin by fluorimetric method. Spectrosc Spect Anal 26:1899–1902Google Scholar
  36. 36.
    Yang P, Yang MM, Yang BS (1996) Fluorescence enhancement effect and the interaction between donor and acceptor. Chin J Chem 14:9–113Google Scholar
  37. 37.
    Bian HD, Li M, Yu Q, Liang H (2006) Studies on the interaction between NaVO3 and bovine serum albumin by fluorescence method. Chin J Inorg Chem. 22:845–850Google Scholar
  38. 38.
    Varga N, Hornok V, Sebők D, Dékány I (2016) Comprehensive study on the structure of the BSA from extended-to aged form in wide (2–12) pH range. Int J Biol Macromol 88:51–58CrossRefGoogle Scholar
  39. 39.
    Liu Y, Chen M, Song L (2013) Comparing the effects of Fe(III) and Cu (II) on the binding affinity of erlotinib to bovine serum albumin using spectroscopic methods. J Lumin 134:515–523CrossRefGoogle Scholar
  40. 40.
    Ross DP, Subramantan S (1981) Thermodynamics of protein association reactions: forcrs contributing to stability. Biochemistry 20:3096–3099CrossRefGoogle Scholar
  41. 41.
    Dolatabadi JEN, Panahi-Azar V, Barzegar A, Jamali AA, Kheirdoosh F, Kashanian S, Omidi Y (2014) Spectroscopic and molecular modeling studies of human serum albumin interaction with propyl gallate. RSC Adv 4:64559–64564CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringSouthwest University of Science and TechnologyMianyangChina

Personalised recommendations