Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 2, pp 1319–1336 | Cite as

Aerosol filtration testing for enhanced performance of radionuclide monitoring stations

  • Joshua A. Hubbard
  • Dora K. Wiemann
  • Jill S. Wheeler
  • Michael A. Omana
  • Jamie L. Gerard


Aerosol filtration was studied to improve U.S. Radionuclide Monitoring Station (RMS) performance for Nuclear-Treaty-Verification. We characterized the performance of three filter materials which employed electrostatically charged filter fibers to enhance nanoparticle collection. Particle-pre-charging, a well-established industrial technique, was tested and enhanced aerosol collection efficiencies. Test results indicated it may be possible to reduce baseline radionuclide sensitivity to approximately 55–60% of current values by increasing the volume of air sampled. Engineering analysis suggested that particle-pre-charging may be a viable technical approach for fielded RMS systems.


Radionuclide Monitoring Station Comprehensive Test Ban Treaty Radionuclide Aerosol Sampler Analyzer Filtration Electrostatics 



This work was funded by the Defense Threat Reduction Agency.


  1. 1.
    Miley HS, Bowyer SM, Hubbard CW, McKinnon AD, Perkins RW, Thompson RC, Warner RA (1998) A description of the DOE radionuclide aerosol sampler/analyzer for the Comprehensive Test Ban Treaty. J Radioanal Nucl Chem 235(1–2):83–87. doi: 10.1007/Bf02385942 CrossRefGoogle Scholar
  2. 2.
    Forrester JB, Carty FF, Comes L, Hayes JC, Miley HS, Morris SJ, Ripplinger M, Slaugh RW, Van Davelaar P (2013) Engineering upgrades to the radionuclide aerosol sampler/analyzer for the CTBT international monitoring system. J Radioanal Nucl Chem 296(2):1055–1060. doi: 10.1007/s10967-012-2199-7 CrossRefGoogle Scholar
  3. 3.
    Commission CTBTOP (2010) Operational manual for radionuclide monitoring and the international exchange of radionuclide data. CTBT/WGB/TL-11,17/18/Rev.5Google Scholar
  4. 4.
    Thompson RC, Miley HS (2002) Filter media recommendation review. Pacific Northwest National LaboratoryGoogle Scholar
  5. 5.
    Valmari T, Pollanen R, Moring M (2000) Testing of different types of flat filtering media for IMS radionuclide stations. STUK—Radiation and Nuclear Safety Authority, Research and Environmental Surveillance, Airborne Radioactivity, Helsinki, FinlandGoogle Scholar
  6. 6.
    Bowyer SM, Gerlach DC, Miley HS, Pratt SL, Thomas CW, Wacker JF, Kniedler MJ (1998) Radiochemistry of the 3M SBMF-40VF filter media used by the DOE CTBT radionuclide aerosol sampler/analyzer (RASA). J Radioanal Nucl Chem 235(1–2):121–124. doi: 10.1007/Bf02385948 CrossRefGoogle Scholar
  7. 7.
    Hubbard JA, Salazar KC, Crown KK, Servantes BL (2014) High-volume aerosol filtration and mitigation of inertial particle rebound. Aerosol Sci Technol 48(5):530–540. doi: 10.1080/02786826.2014.897681 CrossRefGoogle Scholar
  8. 8.
    Sanchez AL, Hubbard JA, Dellinger JG, Servantes BL (2013) Experimental study of electrostatic aerosol filtration at moderate filter face velocity. Aerosol Sci Technol 47(6):606–615. doi: 10.1080/02786826.2013.778384 CrossRefGoogle Scholar
  9. 9.
    Commission CTBTOP (2007) Certification of IMS particulate radionuclide stations. CTBT/PTS/INF.58/Rev.8Google Scholar
  10. 10.
    Tokonami S (2000) Experimental verification of the attachment theory of radon progeny onto ambient aerosols. Health Phys 78(1):74–79CrossRefGoogle Scholar
  11. 11.
    Whitby KT, Sverdrup GM (1980) California aerosols: their physical and chemical characteristics. In: Hidy GM (ed) The character and origins of smog aerosols: a digest of results from the California aerosol characterization experiment (ACHEX), vol 9. Wiley, New York, pp xxii, 776 ppGoogle Scholar
  12. 12.
    Griffiths DJ (1999) Introduction to electrodynamics, 3rd edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  13. 13.
    Flagan RC (2001) Electrical techniques. In: Baron PA, Willeke K (eds) Aerosol measurement: principles, techniques, and applications, 2nd edn. Wiley, New York, pp xxiii, 1131 ppGoogle Scholar
  14. 14.
    Hinds WC (1999) Aerosol technology: properties, behavior, and measurement of airborne particles, 2nd edn. Wiley, New YorkGoogle Scholar
  15. 15.
    Hubbard JA, Brockmann JE, Dellinger J, Lucero DA, Sanchez AL, Servantes BL (2012) Fibrous filter efficiency and pressure drop in the viscous-inertial transition flow regime. Aerosol Sci Technol 46(2):138–147. doi: 10.1080/02786826.2011.616555 CrossRefGoogle Scholar
  16. 16.
    Spencer MT, Shields LG, Prather KA (2007) Simultaneous measurement of the effective density and chemical composition of ambient aerosol particles. Environ Sci Technol 41(4):1303–1309. doi: 10.1021/es061425+ CrossRefGoogle Scholar
  17. 17.
    Endo Y, Chen DR, Pui DYH (1998) Effects of particle polydispersity and shape factor during dust cake loading on air filters. Powder Technol 98(3):241–249. doi: 10.1016/S0032-5910(98)00063-1 CrossRefGoogle Scholar
  18. 18.
    Lee JK, Kim SC, Shin JH, Lee JE, Ku JH, Shin HS (2001) Performance evaluation of electrostatically augmented air filters coupled with a corona precharger. Aerosol Sci Technol 35(4):785–791. doi: 10.1080/027868201753227334 CrossRefGoogle Scholar
  19. 19.
    Harrison RG, Carslaw KS (2003) Ion-aerosol-cloud processes in the lower atmosphere. Rev Geophys 41(3). doi:101210.1029/2002rg000114Google Scholar
  20. 20.
    Clement CF, Harrison RG (2000) Enhanced localised charging of radioactive aerosols. J Aerosol Sci 31(3):363–378. doi: 10.1016/S0021-8502(99)00064-6 CrossRefGoogle Scholar
  21. 21.
    Barrett JC, Clement CF, Virdee ABS (2009) The removal of radioactive aerosols by electric fields. J Aerosol Sci 40(3):185–192. doi: 10.1016/j.jaerosci.2008.10.004 CrossRefGoogle Scholar
  22. 22.
    Clement CF, Clement RA, Harrison RG (1995) Charge distributions and coagulation of radioactive aerosols. J Aerosol Sci 26(8):1207–1225. doi: 10.1016/0021-8502(95)00525-0 CrossRefGoogle Scholar
  23. 23.
    Gensdarmes F, Boulaud D, Renoux A (2001) Electrical charging of radioactive aerosols—comparison of the Clement-Harrison models with new experiments. J Aerosol Sci 32(12):1437–1458. doi: 10.1016/S0021-8502(01)00065-9 CrossRefGoogle Scholar
  24. 24.
    Kim YH, Yiacoumi S, Tsouris C (2015) Surface charge accumulation of particles containing radionuclides in open air. J Environ Radioactiv 143:91–99. doi: 10.1016/j.jenvrad.2015.02.017 CrossRefGoogle Scholar
  25. 25.
    Jaworek A, Krupa A, Czech T (2007) Modern electrostatic devices and methods for exhaust gas cleaning: a brief review. J Electrostat 65(3):133–155. doi: 10.1016/j.elstat.2006.07.012 CrossRefGoogle Scholar
  26. 26.
    Romay FJ, Liu BYH (1998) Degradation of electret filters during DOP aerosol loading. Adv Filtr Sep Technol 12:193–200Google Scholar
  27. 27.
    Martin SB, Moyer ES (2000) Electrostatic respirator filter media: filter efficiency and most penetrating particle size effects. Appl Occup Environ Hyg 15(8):609–617CrossRefGoogle Scholar
  28. 28.
    Barrett LW, Rousseau AD (1998) Aerosol loading performance of electret filter media. Am Ind Hyg Assoc J 59(8):532–539. doi: 10.1080/15428119891010703 CrossRefGoogle Scholar
  29. 29.
    Stevens GA, Moyer ES (1989) Worst case aerosol testing parameters. 1. Sodium-chloride and dioctyl phthalate aerosol filter efficiency as a function of particle-size and flow-rate. Am Ind Hyg Assoc J 50(5):257–264CrossRefGoogle Scholar
  30. 30.
    Martin S, Moyer E, Jensen P (2006) Powered, air-purifying particulate respirator filter penetration by a DOP aerosol. J Occup Environ Hyg 3(11):620–630. doi: 10.1080/15459620600953995 CrossRefGoogle Scholar
  31. 31.
    DeCarlo PF, Slowik JG, Worsnop DR, Davidovits P, Jimenez JL (2004) Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: theory. Aerosol Sci Tech 38(12):1185–1205. doi: 10.1080/027868290903907
  32. 32.
    Baron PA, Willeke K (2001) Aerosol measurement : principles, techniques, and applications, 2nd edn. Wiley, New YorkGoogle Scholar
  33. 33.
    Liu BYH, Lee KW (1976) Efficiency of membrane and nuclepore filters for submicrometer aerosols. Environ Sci Technol 10(4):345–350. doi: 10.1021/es60115a002 CrossRefGoogle Scholar
  34. 34.
    Chang JS, Lawless PA, Yamamoto T (1991) Corona discharge processes. IEEE Trans Plasma Sci 19(6):1152–1166. doi: 10.1109/27.125038 CrossRefGoogle Scholar
  35. 35.
    Yu CP (1977) Precipitation of unipolarly charged particles in cylindrical and spherical vessels. J Aerosol Sci 8:237–241CrossRefGoogle Scholar
  36. 36.
    Adachi M, Okuyama K, Kousaka Y (1985) Electrostatic dispersion of aerosol-particles carrying unipolar charge. J Chem Eng Jpn 18(6):502–509. doi: 10.1252/jcej.18.502 CrossRefGoogle Scholar
  37. 37.
    Hubbard JA, Tucker M, Servantes B, Rivera D (2012) Aerosol delivery of CBW decontaminants to enhance process efficacy: experimental design and transport modeling. Sandia National Laboratories, AlbuquerqueGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations