Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 2, pp 1353–1360 | Cite as

Assessment of secular equilibrium and determination of natural and artificial radionuclide concentrations in the zone surrounding the site of the first nuclear reactor in Jordan

  • Khaled F. Al-Shboul
  • Abdullah E. Alali
  • Hiba Y. AL-Khodire
  • Ibrahim M. Batayneh
  • Alham W. Al-Shurafat


High-resolution gamma-spectrometry and ICP-MS measurements were utilized to confirm the validity of secular equilibrium among the identified natural radioactive progeny of 238U and 232Th series. The measurements of 238U, 232Th, and 40K concentrations, in the soil within 2 km range around the first nuclear reactor in Jordan, were close to the worldwide average levels. Among artificial radionuclides, only 137Cs was detected but with very low traces. The dose rate and radiological hazard parameters were found to be close to worldwide average values and below the recommended limits. Our results indicate that secular equilibrium is unperturbed within and around the uncontaminated reactor site.


Secular equilibrium Gamma spectrometry ICP-MS Radionuclide Dose Radiological hazard 



The authors would like to thank Jordan Atomic Energy Commission (JAEC) for granting permission to use JAEC laboratory facilities.


  1. 1.
    Jordan’s First Nuclear Research Reactor Goes Through IAEA Peer Review, IAEA Office of Public Information and Communication. Accessed 27 Jun 2017
  2. 2.
    JAEC (2011) White paper on nuclear energy in Jordan. Jordan Atomic Energy Commission, AmmanGoogle Scholar
  3. 3.
    IAEA (2016) Safety of research reactors. IAEA safety standards series. International Atomic Energy Agency, ViennaGoogle Scholar
  4. 4.
    UNSCEAR (2008) Sources and effects of ionizing radiation. United Nations Publications, New YorkGoogle Scholar
  5. 5.
    Kritsananuwat R, Sahoo SK, Fukushi M, Pangza K, Chanyotha S (2015) Radiological risk assessment of 238U, 232Th and 40K in Thailand coastal sediments at selected areas proposed for nuclear power plant sites. J Radioanal Nucl Chem 303(1):325–334. doi: 10.1007/s10967-014-3376-7 CrossRefGoogle Scholar
  6. 6.
    Veiga R, Sanches N, Anjos RM, Macario K, Bastos J, Iguatemy M, Aguiar JG, Santos AMA, Mosquera B, Carvalho C, Baptista Filho M, Umisedo NK (2006) Measurement of natural radioactivity in Brazilian beach sands. Radiat Meas 41(2):189–196. doi: 10.1016/j.radmeas.2005.05.001 CrossRefGoogle Scholar
  7. 7.
    Tabar E, Yakut H, Saç MM, Taşköprü C, İçhedef M, Kuş A (2017) Natural radioactivity levels and related risk assessment in soil samples from Sakarya, Turkey. J Radioanal Nucl Chem. doi: 10.1007/s10967-017-5266-2 Google Scholar
  8. 8.
    Singh P, Singh P, Bajwa BS, Sahoo BK (2017) Radionuclide contents and their correlation with radon-thoron exhalation in soil samples from mineralized zone of Himachal Pradesh. India. J Radioanal Nucl Chem 311(1):253–261. doi: 10.1007/s10967-016-4975-2 CrossRefGoogle Scholar
  9. 9.
    Pehlivanovic B, Avdic S, Gazdic I, Osmanovic A (2017) Measurement of natural environmental radioactivity and estimation of population exposure in Bihac, Bosnia and Herzegovina. J Radioanal Nucl Chem 311(3):1909–1915. doi: 10.1007/s10967-016-5155-0 CrossRefGoogle Scholar
  10. 10.
    Chaudhuri P, Naskar N, Lahiri S (2017) Measurement of background radioactivity in surface soil of Indian Sundarban. J Radioanal Nucl Chem 311(3):1947–1952. doi: 10.1007/s10967-016-5158-x CrossRefGoogle Scholar
  11. 11.
    Jang M, Chung KH, Ji Y-Y, Lim JM, Kim CJ, Kang MJ, Choi GS (2016) Indoor external and internal exposure due to building materials containing NORM in Korea. J Radioanal Nucl Chem 307(3):1661–1666. doi: 10.1007/s10967-015-4375-z CrossRefGoogle Scholar
  12. 12.
    Zaim N, Atlas H (2016) Assessment of radioactivity levels and radiation hazards using gamma spectrometry in soil samples of Edirne. Turkey. J Radioanal Nucl Chem 310(3):959–967. doi: 10.1007/s10967-016-4908-0 CrossRefGoogle Scholar
  13. 13.
    Bourdon B (2016) Uranium Decay Series. In: White WM (ed) Encyclopedia of geochemistry: a comprehensive reference source on the chemistry of the earth. Springer, Cham, pp 1–6Google Scholar
  14. 14.
    Papadopoulos A, Christofides G, Koroneos A, Stoulos S, Papastefanou C (2013) Radioactive secular equilibrium in 238U and 232Th series in granitoids from Greece. Appl Radiat Isot 75:95–104. doi: 10.1016/j.apradiso.2013.02.006 CrossRefGoogle Scholar
  15. 15.
    IAEA (2004) Soil sampling for environmental contaminants. IAEA TECDOC No. 1415. International Atomic Energy Agency, Vienna, AustriaGoogle Scholar
  16. 16.
    Bakshi AK, Prajith R, Chinnaesakki S, Pal R, Sathian D, Dhar A, Selvam TP, Sapra BK, Datta D (2017) Measurements of background radiation levels around Indian station Bharati, during 33rd Indian Scientific Expedition to Antarctica. J Environ Radioact 167:54–61. doi: 10.1016/j.jenvrad.2016.11.025 CrossRefGoogle Scholar
  17. 17.
    Long SE, Martin TD, Martin ER (1994) Method 200.8 determination of trace elements in waters and wastes by inductively coupled plasma-mass spectrometry, Revision 5.4. U.S. Environmental Protection Agency, Cincinnati, OhioGoogle Scholar
  18. 18.
    UNSCEAR (2000) Sources and effects of ionizing radiation. United Nations Publications, New YorkGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Khaled F. Al-Shboul
    • 1
  • Abdullah E. Alali
    • 1
  • Hiba Y. AL-Khodire
    • 1
  • Ibrahim M. Batayneh
    • 1
  • Alham W. Al-Shurafat
    • 2
  1. 1.Department of Nuclear EngineeringJordan University of Science and TechnologyIrbidJordan
  2. 2.Department of Civil EngineeringJordan University of Science and TechnologyIrbidJordan

Personalised recommendations