Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 2, pp 1207–1235 | Cite as

Nuclear reaction cross sections for proton therapy applications

  • Milad Enferadi
  • Saber Sarbazvatan
  • Mahdi Sadeghi
  • Ji-Hong Hong
  • Chuan-Jong Tung
  • Tsi-Chian Chao
  • Chung-Chi Lee
  • Shiaw-Pyng Wey


Nuclear reactions of high-energy protons with treatment equipment, air, and patient tissue during proton therapy generate residual radioactivity and secondary particles including protons, deuterons, alphas, and neutrons. The most up-to-date versions of INCL++ (v5.2.9), TALYS (v1.8), EMPIRE (v3.2.2 Malta), and ALICE/ASH were used in this study to calculate the excitation functions of proton-induced reactions with carbon, nitrogen, oxygen, aluminum, calcium, iron, nickel, copper, zinc, tin, tungsten, and lead nuclei. The cross sections of different nuclear reaction mechanisms, gamma particles, and residual radionuclides were calculated. The obtained results were compared with available experimental data and the ENDF/B-VII.1.


Proton therapy Secondary particles TALYS EMPIRE INCL++ Excitation functions 



The authors would like to thank Prof. Davide Mancusi (CEA, Centre de Saclay, IRFU/SPhN, F-91191 Gif-sur-Yvette, France), Prof. Arjan Koning (Nuclear Research and Consultancy Group, Petten, The Netherlands), Prof. Michal Herman (National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY), and Prof. Viktor Zerkin (NDS, International Atomic Energy Agency, Vienna, Austria) for technical supports and providing the most up-to-date versions of INC++, TALYS and EMPIRE codes.


  1. 1.
    Hall EJ (2006) Intensity-modulated radiation therapy, protons, and the risk of second cancers. Int J Radiat Oncol Biol Phys 65(1):1–7CrossRefGoogle Scholar
  2. 2.
    Sadeghi M, Enferadi M, Shirazi A (2010) External and internal radiation therapy: past and future directions. J Cancer Res Ther 6(3):239–248CrossRefGoogle Scholar
  3. 3.
    Moskvin V, Cheng CW, Das IJ (2011) Pitfalls of tungsten multileaf collimator in proton beam therapy. Med Phys 38(12):6395–6406CrossRefGoogle Scholar
  4. 4.
    Kim S, Min BJ, Yoon MG, Kim JS et al (2011) Secondary radiation doses of intensity-modulated radiotherapy and proton beam therapy in patients with lung and liver cancer. Radiother Oncol 98:335–339CrossRefGoogle Scholar
  5. 5.
    Thomadsen B, Nath R, Bateman FB, Farr J, Glisson C, Islam MK et al (2014) Potential hazard due to induced radioactivity secondary to radiotherapy: the report of task group 136 of the American Association of Physicists in Medicine. Health Phys 107(5):442–460CrossRefGoogle Scholar
  6. 6.
    Kraan AC (2015) Range verification methods in particle therapy: underlying physics and Monte Carlo modeling. Front Oncol 5:150CrossRefGoogle Scholar
  7. 7.
    Durante M, Paganetti H (2016) Nuclear physics in particle therapy: a review. Rep Prog Phys 79:096702CrossRefGoogle Scholar
  8. 8.
    ENDF/B-VII.1 (2017) Evaluated nuclear data library. National Nuclear Data Center, Brookhaven National Laboratory
  9. 9.
    Koning AJ, Hilaire H, Goriely S (2017). TALYS-1.8, a nuclear reaction program. NRG, Netherland.
  10. 10.
    Leray S, Mancusi D, Kaitaniemi P, David JC, Boudard A, Braunn B, Cugnon J (2017) INCL, Liège intranuclear cascade model
  11. 11.
    Herman M, Capote R, Sin M, Trkov A, et al. (2017) EMPIRE-3.2 malta modular system for nuclear reaction calculations and nuclear data evaluation. NNDC, Brookhaven National Laboratory
  12. 12.
    Broeders CHM, Konobeyev AY, Korovin YA, Lunes VP, Blann M (2006) ALICE/ASH—pre-compound and evaporation model code system for calculation of excitation functions, energy and angular distributions of emitted particles in nuclear reaction at intermediate energies, FZK-7183
  13. 13.
    Sadeghi M, Enferadi M, Nadi H, Tenreiro C (2010) A novel method for the cyclotron production no-carrier-added 93mMo for nuclear medicine. J Radioanal Nucl Chem 286:141–144CrossRefGoogle Scholar
  14. 14.
    Sadeghi M, Enferadi M, Nadi H (2010) Study of the cyclotron production of 172Lu: an excellent radiotracer. J Radioanal Nucl Chem 286:259–263CrossRefGoogle Scholar
  15. 15.
    Sadeghi M, Enferadi M, Aboudzadeh M, Sarabadani P (2011) Production of 122Sb for the study of environmental pollution. J Radioanal Nucl Chem 287:585–589CrossRefGoogle Scholar
  16. 16.
    Nadi H, Sadeghi M, Enferadi M, Sarabadani P (2011) Cyclotron production of 169Yb: a potential radiolanthanide for brachytherapy. J Radioanal Nucl Chem 289:361–365CrossRefGoogle Scholar
  17. 17.
    Sadeghi M, Zandi N, Bakhtiari M (2012) Nuclear model calculation for cyclotron production of 61Cu as a PET imaging. J Radioanal Nucl Chem 292:777–783CrossRefGoogle Scholar
  18. 18.
    Fuladvand H, Bakhtiari M, Sadeghi M, Amiri M (2013) Pre-equilibrium effects on proton, deuteron, and alpha induced reactions for the production of 72As as a PET imaging radioisotope. J Radioanal Nucl Chem 298:501–512CrossRefGoogle Scholar
  19. 19.
    Rostampour M, Aboudzadeh M, Sadeghi M, Hamidi S (2016) Theoretical assessment of production routes for 63Zn by cyclotron. J Radioanal Nucl Chem 309:677–684Google Scholar
  20. 20.
    Aoust T, Cagnon J (2009) Production of Z +1 and A+1 isotopes in proton-induced reactions on A Z nuclei. Nucl Phys A 828:52–71CrossRefGoogle Scholar
  21. 21.
    Diffenderfer ES, Ainsley CG, Kirk ML, McDonough JE, Maughan RL (2011) Comparison of secondary neutron dose in proton therapy resulting from the use of a tungsten alloy MLC or a brass collimator system. Med Phys 38:6248–6256CrossRefGoogle Scholar
  22. 22.
    Lund/LBNL (1999) The Lund/LBNL Nuclear Data Search Version 2.0. LBNL, Berkeley.
  23. 23.
    Koning AJ, Delaroche JP (2003) Local and global nucleon optical models from 1 keV to 200 MeV. Nucl Phys A 713:231–310CrossRefGoogle Scholar
  24. 24.
    Watanabe S (1958) High energy scattering of deuterons by complex nuclei. Nucl Phys 8:484–492CrossRefGoogle Scholar
  25. 25.
    Ericson T (1960) The statistical model and nuclear level densities. Adv Phys 9:425–511CrossRefGoogle Scholar
  26. 26.
    Hauser W, Feshbach H (1952) The inelastic scattering of neutrons. Phys Rev C 87:366–373CrossRefGoogle Scholar
  27. 27.
    Kalbach C (2005) Pre-equilibrium reactions with complex particle channels. Phys Rev C 71:034606CrossRefGoogle Scholar
  28. 28.
    Raynal J (1994) Notes on ECIS–94. CEA Saclay Report No. CEA-N-2772Google Scholar
  29. 29.
    Herman M, Capote R, Carlson BV, Obložinský P, Sin M, Trkov A, Wienke H, Zerkin V (2007) EMPIRE: nuclear reaction model code system for data evaluation. Nucl Data Sheets 108(12):2655–2715CrossRefGoogle Scholar
  30. 30.
    Capote R, Herman M, Obložinský P et al (2009) RIPL—reference input parameter library for calculation of nuclear reactions and nuclear data evaluations. Nucl Data Sheets 110(3):3107–3214CrossRefGoogle Scholar
  31. 31.
    Leray S, Mancusi D, Kaitaniemi P, David JC, Boudard A, Braunn B, Cugnon J (2013) Extension of the Liège intra nuclear cascade model to light ion-induced collisions for medical and space applications. J Phys Conf Ser 420:012065CrossRefGoogle Scholar
  32. 32.
    Boudard A, Cugnon J, David JC, Leray S, Mancusi D (2013) New potentialities of the Liège intranuclear cascade model for reactions induced by nucleons and light charged particles. Phys Rev C 87:014606CrossRefGoogle Scholar
  33. 33.
    Mancusi D, Boudard A, Cugnon J, David JC, Kaitaniemi P, Leray S (2014) Extension of the Liège intranuclear cascade model to reactions induced by light nuclei. Phys Rev C 90:054602CrossRefGoogle Scholar
  34. 34.
    Braunn B, Boudard A, David JC, Koning AJ, Leprince A, Leray S, Mancusi D (2015) Assessment of nuclear-reaction codes for proton-induced reactions on light nuclei below 250 MeV. Eur Phys J Plus 130:153–170CrossRefGoogle Scholar
  35. 35.
    Kelić A, Ricciardi MV, Schmidt KH (2008) In Joint ICTP-IAEA Advanced Workshop on model codes for spallation reactions, IAEA, Trieste, Italy, pp 181. Report INDC(NDC)-0530Google Scholar
  36. 36.
    Chen J, Dong T, Ren Z (2016) Cross sections of proton- and neutron-induced reactions by the Liège intranuclear cascade model. Phys Rev C 93:064608CrossRefGoogle Scholar
  37. 37.
    Weisskopf VF, Ewing DH (1940) On the yield of nuclear reactions with heavy elements. Phys Rev 57:472–485CrossRefGoogle Scholar
  38. 38.
    Blann M, Vonach HK (1983) Global test of modified pre-compound decay models. Phys Rev C 28:1475–1496CrossRefGoogle Scholar
  39. 39.
    Blann M (1991) ALICE-91, Statistical model code system with fission competition. RSIC code, package PSR-146Google Scholar
  40. 40.
    EXFOR/CSISRS (2016) Experimental nuclear reaction data, international atomic energy agency
  41. 41.
    Gloris M, Michel R, Sudbrock F, Herpers U, Malmborg P, Holmqvist B (2001) Proton induced production of residual radionuclides in lead at intermediate energies. Nucl Instrum Methods Phys Res Sect A 463:593–633CrossRefGoogle Scholar
  42. 42.
    Titarenko YE, Batyaev VF, Titarenko AY, Butko MA et al (2011) Measurement and simulation of the cross sections for nuclide production in natW and 181Ta targets irradiated with 0.04–2.6 GeV protons. Phys Atom Nucl 74:551–572CrossRefGoogle Scholar
  43. 43.
    Michel R, Gloris M, Protoschill J, Uosif MAM et al (2002) Cross sections for the production of radionuclides by proton induced reactions on W, Ta, Pb and Bi from thresholds up to 2.6 GeV. J Nucl Sci Technol Suppl 2:242–245CrossRefGoogle Scholar
  44. 44.
    Bonardi ML, Groppi F, Mainardi HS, Kokhanyuk VM, Lapshina EV, Mebel MV, Zhuikov BL (2005) Cross section studies on 64Cu with zinc target in the proton energy range from 141 down to 31 MeV. J Radioanal Nucl Chem 264:101–105CrossRefGoogle Scholar
  45. 45.
    Faßbender M, Shubin YN, Lunev VP, Qaim SM (1997) Experimental studies and nuclear model calculations on the formation of radioactive products in interactions of medium energy protons on copper, zinc and brass: estimation of collimator activation in proton therapy facilities. Appl Radiat Isot 48:1221–1230CrossRefGoogle Scholar
  46. 46.
    Michel R, Bodemann R, Busemann H, Daunke R et al (1997) Cross sections for the production of residual nuclides by low- and medium-energy protons from the target elements C, N, O, Mg, Al, Si, Ca, Ti, V, Mn, Fe Co, Ni, Cu, Sr, Y, Zr, Nb, Ba and Au. Nucl Instrum Methods Phys Res Sect B 129:153–193CrossRefGoogle Scholar
  47. 47.
    Orth CJ, Dropesky BJ, Williams RA, Giesler GC, Hudis J (1978) Pion-induced spallation of copper across the (3, 3) resonance. Phys Rev C 18(3):1426–1435CrossRefGoogle Scholar
  48. 48.
    Sisterson JM, Vincent J (2006) Cross section measurements for proton-induced reactions in Fe and Ni producing relatively short-live radionuclides at E p = 140–500 MeV. Nucl Instrum Methods Phys Res Sec B 251(1):1–8CrossRefGoogle Scholar
  49. 49.
    Michel R, Peiffer F, Stück R (1985) Measurement and hybrid model analysis of integral excitation functions for proton-induced reactions on vanadium, manganese and cobalt up to 200 MeV. Nucl Phys A 441(4):617–639CrossRefGoogle Scholar
  50. 50.
    Greenwood LR, Smither RK (1984) Measurement of Cu spallation cross sections at IPNS, vol 16. Department of Energy, Office of Fusion Energy, INIS, Washington DC, pp 11–17Google Scholar
  51. 51.
    Mills SJ, Steyn GF, Nortier FM (1992) Experimental and theoretical excitation functions of radionuclides produced in proton bombardment of copper up. Int J Radiat Appl Instrum 43(8):1019–1030CrossRefGoogle Scholar
  52. 52.
    Merchel S, Faestermann T, Herpers U, Knie K, Korschinek G, Leya I, Michel R, Rugel G, Wallner C (2000) Thin- and thick-target cross sections for the production of 53Mn and 60Fe. Nucl Instrum Methods Phys Res Sect B 172:806–811CrossRefGoogle Scholar
  53. 53.
    Brodzinski RL, Rancitelli LA, Cooper JA, Wogman NA (1971) High-energy proton spallation of iron. Phys Rev C 4:1257–1265CrossRefGoogle Scholar
  54. 54.
    Lavrukhina AK, Revin LD, Malyshev VV, Satarova LM (1963) Reactions of deep spallation of Fe nuclei by 150 MeV protons. J Exp Theor Phys 44:1429–1436Google Scholar
  55. 55.
    Gloris M (1998) Proton-induced production of residual nuclei in heavy elements at medium energies. Thesis, University of Hannover, GermanyGoogle Scholar
  56. 56.
    Sisterson JM, Kim K, Beverding A, Englert PAJ, Caffee MW, Vincent J, Castaneda C, Reedy RC (1997) Measuring excitation functions needed to interpret cosmogenic nuclide production in lunar rocks. AIP Conf Proc 392:811–814CrossRefGoogle Scholar
  57. 57.
    Albouy MG, Cohen JP, Gusakow M, Poffe MN, Sergolle H, Valentin L (1962) Spallation de l’oxygene par des protons de 20 a 150 MeV. Phys Lett 2(7):306–307CrossRefGoogle Scholar
  58. 58.
    Gauvin H, Lefort M, Tarrago X (1962) Émission d’hélions dans les réactions de spallation. Nucl Phys 39:447–463CrossRefGoogle Scholar
  59. 59.
    Measday DF (1966) The 12C (p, pn)11C reaction from 50 to 160 MeV. Nucl Phys 78:476–480CrossRefGoogle Scholar
  60. 60.
    Crandall WE, Millburn GP, Pyle RV, Birnbaum W (1956) C12(x, xn)C11 and Al27(x, x2pn)Na24 cross sections at high energies. Phys Rev C 101:329–337CrossRefGoogle Scholar
  61. 61.
    Cumming JB (1963) Monitor reactions for high energy proton beams. Ann Rev Nucl Sci 13:261–286CrossRefGoogle Scholar
  62. 62.
    Wu QB, Wang QB, Liang TJ, Zhang G, Ma YL et al (2016) Study on patient-induced radioactivity during proton treatment in hengjian proton medical facility. Appl Radiat Isot 115:235–250CrossRefGoogle Scholar
  63. 63.
    Makino MQ, Waddell CN, Eisberg RM (1965) Proton total reaction cross sections of carbon from 16 to 28 MeV. Nucl Phys 68:378–386CrossRefGoogle Scholar
  64. 64.
    Dicello JF, Igo G (1970) Proton total reaction cross sections in the 10–20 MeV range 40calcium and 1carbon. Phys Rev C 2:488–499CrossRefGoogle Scholar
  65. 65.
    McGill WF, Carlson RF, Short TH, Cameron JM, Reginald Richardson J, Šlaus I et al (1974) Measurements of the proton total reaction cross section for light nuclei between 20 and 48 MeV. Phys Rev C 10:2237–2246CrossRefGoogle Scholar
  66. 66.
    Auce A, Angemarsson A, Johansson R, Lantz M, Tibell G, Carlson RF et al (2005) Reaction cross sections for protons on 12C,40Ca,90Zr, and 208Pb at energies between 80 and 180 MeV. Phys Rev C 71:064606CrossRefGoogle Scholar
  67. 67.
    Kiener J, Berheide M, Achouri NL, Boughrara A, Coc A, Lefebvre A et al (1998) γ-ray production by inelastic proton scattering on 16O and 12C. Phys Rev C 58:2174–2179CrossRefGoogle Scholar
  68. 68.
    Bertrand FE, Peelle RW (1973) Complete hydrogen and helium particle spectra from 30- to 60-MeV proton bombardment of nuclei with A = 12 to 209 and comparison with the intranuclear cascade model. Phys Rev C 8:1045–1064CrossRefGoogle Scholar
  69. 69.
    MacLeod AM, Milne GR (1972) Proton nuclear reaction cross sections in carbon and the 12C (p, p’3a) reaction mechanism at 13 MeV. J Phys A 5:1252CrossRefGoogle Scholar
  70. 70.
    Harada M, Watanabe Y, Yamamoto Yoshioka S, Sato K, Nakashima T et al (1999) The 12C (p, p′3α) breakup reaction induced by 14, 18 and 26 MeV protons. J Nucl Sci Technol 36:313–325CrossRefGoogle Scholar
  71. 71.
    Taylor AE, Wood E (1961) Proton scattering from light elements at 142 MeV. Nucl Phys 25:642–655CrossRefGoogle Scholar
  72. 72.
    Carlson RF, Cox AJ, Nasr TN, De Jong MS, Ginther DL, Hasell DK et al (1985) Measurements of proton total reaction cross sections for 6Li, 7Li, 14N, 20Ne and 40Ar between 23 and 49 MeV. Nucl Phys A 445:57–69CrossRefGoogle Scholar
  73. 73.
    Carlson RF, Cox AJ, Nimmo JR, Davison NE, Elbakr SA, Horton JL et al (1975) Proton total reaction cross sections for the doubly magic nuclei 16O, 40Ca, and 208Pb in the energy range 20–50 MeV. Phys Rev C 12:1167–1175CrossRefGoogle Scholar
  74. 74.
    Ingemarsson A, Nyberg N, Renberg PU, Sundberg O, Carlson RF, Auce A et al (1999) Reaction cross sections for 65 MeV protons on targets from 9Be to 208Pb. Nucl Phys A 653:341–354CrossRefGoogle Scholar
  75. 75.
    Vdovin AI, Golikov IG, Zhukov MN, Loshchakov II, Ostroumov VI (1979) Cross sections of reactions due to the action of protons having an energy of 50 MeV on 12C, 14N, 16O nuclei. Bull Russ Acad Sci Phys 43(1):p124Google Scholar
  76. 76.
    Johansson A, Svanberg U, Sundberg O (1961) Total nuclear reaction cross sections for 180 MeV protons. Arkiv Fysik 19:p527Google Scholar
  77. 77.
    Sunil C (2016) Analysis of the radiation shielding of the bunker of a 230 MeV proton cyclotron therapy facility; comparison of analytical and Monte Carlo techniques. Appl Radiat Isot 110:205–211CrossRefGoogle Scholar
  78. 78.
    ICRU Report 63 (2000) Nuclear data for neutron and proton radiotherapy and for radiation protection. International Commission on Radiation Units and Measurements, Bethesda. ISBN 0-913394-62-9Google Scholar
  79. 79.
    Goloskie R, Strauch K (1962) Measurement of proton inelastic cross sections between 77 MeV and 133 MeV. Nucl Phys 29:474–485CrossRefGoogle Scholar
  80. 80.
    Pollock RE, Schrank G (1965) Proton total reaction cross sections at 16.4 MeV. Phys Rev 140:B575–B585CrossRefGoogle Scholar
  81. 81.
    Menet JJ, Gross EE, Malanify JJ, Zucker A (1969) Total reaction cross-section measurements with 60 MeV proton. Phys Rev Lett 22:1128–1131CrossRefGoogle Scholar
  82. 82.
    Okumura N, Aoki Y, Joh T, Honkyu Y, Hirota K, Itoh KS (2002) Measuring system of proton total reaction cross-sections at tandem energy region. Nucl Instrum Methods Phys Res Sect A 487:565–570CrossRefGoogle Scholar
  83. 83.
    Wu JR, Chang CC, Holmgren HD (1979) Charge-particle spectra-90 MeV protons on 27Al, 58Ni, 90Zr and 209Bi. Phys Rev C 19:698–713CrossRefGoogle Scholar
  84. 84.
    Verbinski VV, Burrus WR (1969) Direct and compound-nucleus neutrons from 14 to 18 MeV proton on 9Be, 14N, 27Al, 56Fe, 115In, 81Ta and 208Pb and from 33 MeV Bremsstrahlung on 27Al, 206Pb and 209Bi. Phys Rev 177:1671–1686CrossRefGoogle Scholar
  85. 85.
    Segel RE, Chen T, Rutledge LL Jr, Maher JV, Wiggins J, Singh PP, Debevec PT (1982) Inclusive proton reactions at 164 MeV. Phys Rev C 26:2424–2432CrossRefGoogle Scholar
  86. 86.
    Walton JR, Heymann D, Yaniv A, Edgerley D, Row MW (1976) Cross sections for He and Ne isotopes in natural Mg, Al, and Si, He isotopes in CaF2, Ar isotopes in natural Ca, and radionuclides in natural Al, Si, Ti, Cr, and stainless steel induced by 12- to 45-MeV protons. J Geophys Res 81:5689–5699CrossRefGoogle Scholar
  87. 87.
    Takao Y, Kanda Y, Hashimoto H, Yamasaki K, Yamaguchi K, Yonemoto T et al (1997) Measurement of proton-induced helium production cross sections for aluminum and nickel below 16 MeV. Nucl Sci Technol 34:109–115CrossRefGoogle Scholar
  88. 88.
    Leya I, Busemann H, Baur H, Wieler R, Gloris M, Neumann S, Michel R, Sudbrock F, Herpers U (1998) Cross sections for the proton-induced production of He and Ne isotopes from magnesium, aluminum, and silicon. Nucl Instrum Methods Phys Res Sect B 145:449–458CrossRefGoogle Scholar
  89. 89.
    Wilkins BD, Igo G (1963) 10 MeV proton reaction cross sections for several elements. Phys Rev 129:2198–2206CrossRefGoogle Scholar
  90. 90.
    Makino MQ, Waddell CN, Eisberg RM, Hestenes J (1964) Study of shell closure effect on proton total reaction cross sections. Phys Lett 9(2):178–180CrossRefGoogle Scholar
  91. 91.
    Kirkby P, Link WT (1966) Faraday-cup measurement of proton total reaction cross sections at 100 MeV. Can J Phys 44(8):1847–1862CrossRefGoogle Scholar
  92. 92.
    Renberg PU, Measday DF, Pepin M, Schwaller P, Favier B, Richard-Serre C (1972) Reaction cross sections for protons in the energy range 220–570 MeV. Nucl Phys A 183(1):81–104CrossRefGoogle Scholar
  93. 93.
    Ammon K, Leya I, Lavielle B, Gilabert E, David JC, Herpers U, Michel R (2008) Cross sections for the production of helium, neon and argon isotopes by proton-induced reactions on iron and nickel. Nucl Instrum Methods Phys Res Sect B 266:2–12CrossRefGoogle Scholar
  94. 94.
    Schaeffer OA, Zahringer J (1959) High-sensitivity mass spectrometric measurement of stable helium and argon isotopes produced by high-energy protons in iron. Phys Rev 113:674–678CrossRefGoogle Scholar
  95. 95.
    Makino MQ, Waddell CN, Eisberg RM (1964) Total reaction cross sections for 29 MeV protons. Nucl Phys 50:145–156CrossRefGoogle Scholar
  96. 96.
    Bearpark K, Graham WR, Jones G (1965) Total proton and deuteron reaction cross-sections in the energy range 8.5–11.5 MeV. Nucl Phys 73(1):206–216CrossRefGoogle Scholar
  97. 97.
    Muto J, Iton H, Okano K, Shiomi N, Fukuda K, Omori Y, Kinar M (1963) Alpha-particles from several elements bombarded with 30, 43 and 56 MeV protons. Nucl Phys 47:19–32CrossRefGoogle Scholar
  98. 98.
    Jung P (1991) Cross sections for the production of helium and long-living radioactive isotopes by protons and deuterons. In: International conference on nuclear data for science and technology, Juelich, p 352Google Scholar
  99. 99.
    Clayton J, Benenson W, Cronqvist M, Fox R et al (1992) High energy gamma ray production in proton-induced reactions at 104, 145, and 195 MeV. Phys Rev C 45:1815–1821CrossRefGoogle Scholar
  100. 100.
    Leya I, Wieler R, David JC, Leray S, Donadille L, Cugnon J, Michel R (2005) Production of noble gas isotopes by proton-induced reactions on lead. Nucl Instrum Methods Phys Res Sect B 229:1–23CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Department of Medical Imaging and Radiological Sciences, College of MedicineChang Gung UniversityKwei-ShanTaiwan
  2. 2.Faculdade de CiênciasUniversidade do Porto-Rua do Campo AlegrePortoPortugal
  3. 3.Medical Physics Department, School of MedicineIran University of Medical ScienceTehranIran
  4. 4.Department of Radiation OncologyChang Gung Memorial HospitalLinkouTaiwan
  5. 5.Radiation Biology Research Center, Institute for Radiological ResearchChang Gung University/Chang Gung Memorial HospitalLinkouTaiwan
  6. 6.Medical Physics Research Center, Institute for Radiological ResearchChang Gung University/Chang Gung Memorial HospitalLinkouTaiwan

Personalised recommendations