Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 2, pp 1161–1167 | Cite as

Simultaneous quantification of Zr, Cr and Cu in copper alloy matrix using charged particle activation analysis

Article
  • 61 Downloads

Abstract

The charged particle activation analysis (CPAA) technique has been applied for quantitative estimation of Zr, Cr and Cu simultaneously in copper alloy. An ion beam of 13 MeV proton was found to be suitable to use (p,n) nuclear reaction channel in CPAA. The optimization of irradiation conditions were performed to apply instrumental approach by minimizing the production of matrix activity. The results of CPAA have been compared with those obtained by using instrumental neutron activation analysis and energy dispersive X-ray fluorescence techniques. Analysis of variance test indicated the statistical parity of the results obtained in the above mentioned three methods.

Keywords

Zirconium Copper CPAA Proton beam ANOVA 

Notes

Acknowledgements

We are pleased to acknowledge the support of RT K-130 cyclotron staff, VECC in performing the irradiations. We are also acknowledging the support and encouragement from Dr. P. D. Naik, Associate Director, Chemistry Group, and Head, Analytical Chemistry Division, BARC. We thank Dr. K. K. Swain, ACD, BARC, for guiding us though out the work.

References

  1. 1.
    Kalinin G, Gauster W, Matera R, Tavassoli AAF, Rowcliffe A, Fabritsiev S, Kawamura H (1996) Structural materials for ITER in-vessel component design. J Nucl Mater 233:9–16CrossRefGoogle Scholar
  2. 2.
    Alexander DJ, Zinkle SK, Rowcliffe AF (1999) Fracture toughness of copper-base alloys for fusion energy applications. J Nucl Mater 271–272:429–434CrossRefGoogle Scholar
  3. 3.
    Batra IS, Dey GK, Kulkarni U, Banerjee S (2001) Microstructure and properties of a Cu–Cr–Zr alloy. J Nucl Mater 299:91–100CrossRefGoogle Scholar
  4. 4.
    Durocher A, Lipa M, Chappuis P, Schlosser J, Huber T, Schedler B (2002) TORE SUPRA experience of copper chromium zirconium electron beam welding. J Nucl Mater 307–311:1554–1557CrossRefGoogle Scholar
  5. 5.
    Shangina DV, Bochvar NR, Gorshenkov MV, Yanar H, Purcek G, Dobatkin SV (2016) Influence of microalloying with zirconium on the structure and properties of Cu–Cr alloy after high pressure torsion. Mater Sci Eng 650:63–66CrossRefGoogle Scholar
  6. 6.
    Li Z, Shen J, Shen F, Li Q (2003) A high strength and high conductivity copper alloy prepared by spray forming. J Mater Process Technol 137:60–64CrossRefGoogle Scholar
  7. 7.
    Tenwick MJ, Davies HA (1988) Enhanced strength in high conductivity copper alloys. Mater Sci Eng 98:543–546CrossRefGoogle Scholar
  8. 8.
    Banerjee S, Banerjee MK (2016) Nuclear applications: zirconium alloys, in reference module in materials science and materials engineering. Elsevier, 2016, Current as of 5 December 2016. ISBN 9780128035818, https://doi.org/10.1016/B978-0-12-803581-8.02576-5
  9. 9.
    Krishnan R, Asundi M (1981) Zirconium alloys in nuclear technology. Proc Indian Acad Sci 4:41–56Google Scholar
  10. 10.
    Dupraw WA (1972) Simple spectrophotometric method for determination of zirconium or hafnium in selected molybdenum-base alloys. Talanta 19(6):807–810CrossRefGoogle Scholar
  11. 11.
    Poehle S, Schmidt K, Koschinsky A (2015) Determination of Ti, Zr, Nb, V, W and Mo in seawater by a new online-preconcentration method and subsequent ICP–MS analysis. Deep Sea Res I 98:83–93CrossRefGoogle Scholar
  12. 12.
    Sun S, Li J (2015) Determination of Zr, Nb, Mo, Sn, Hf, Ta, and W in seawater by N-benzoyl-N-phenylhydroxylamine extraction chromatographic resin and inductively coupled plasma-mass spectrometry. Microchem J 119:102–107CrossRefGoogle Scholar
  13. 13.
    Quemet A, Maillard C, Ruas A (2015) Determination of zirconium isotope composition and concentration for nuclear sample analysis using Thermal Ionization Mass Spectrometry. Int J Mass Spectrom 392:34–40CrossRefGoogle Scholar
  14. 14.
    Raso M, Censi P, Saiano F (2013) Simultaneous determinations of zirconium, hafnium, yttrium and lanthanides in seawater according to a co-precipitation technique onto iron-hydroxide. Talanta 116:1085–1090CrossRefGoogle Scholar
  15. 15.
    Berglund B, Wichardt C (1990) Accurate and precise reference method for the determination of chromium in high-alloy steel. Anal Chim Acta 236:399–410CrossRefGoogle Scholar
  16. 16.
    Ryck ID, Adriaens A, Pantos E, Adams F (2003) A comparison of microbeam techniques for the analysis of corroded ancient bronze objects. Analyst 128:1104–1109CrossRefGoogle Scholar
  17. 17.
    Ghasemi J, Shahabadi N, Seraji HR (2004) Spectrophotometric simultaneous determination of cobalt, copper and nickel using nitroso-R-salt in alloys by partial least squares. Anal Chim Acta 510:121–126CrossRefGoogle Scholar
  18. 18.
    Chaisuksant R, Palkawong-na-ayuthaya W, Grudpan K (2000) Spectrophotometric determination of copper in alloys using naphthazarin. Talanta 53:579–585CrossRefGoogle Scholar
  19. 19.
    Criss JW, Birks LS (1968) Calculation methods for fluorescent x-ray spectrometry. Empirical coefficients versus fundamental parameters. Anal Chem 40(7):1080–1086CrossRefGoogle Scholar
  20. 20.
    Kataoka Y (1989) Standardless X-ray fluorescence spectrometry (fundamental parameter method using sensitivity library). Rigaku J 6(1):33–40Google Scholar
  21. 21.
    Goldstein SJ, Sivils LD (2002) A non destructive X-ray fluorescence method for analysis of metal alloy wire samples, JCPDS-International Centre for Diffraction Data 2002. Adv X-Ray Anal 45:458–462Google Scholar
  22. 22.
    Remya Devi PS, Dalvi AA, Swain KK, Verma R (2015) Comparison and statistical evaluation of neutron activation methodologies for the determination of gold in copper concentrate. Anal Methods 7:3833–3840CrossRefGoogle Scholar
  23. 23.
    Hokkaido University Nuclear Reaction Data Centre (JCPRG). http://www.jcprg.org/exfor/. Accessed 14 Jan 2017
  24. 24.
    Al-Abyad M, Abdel-Hamid AS, Tárkányi F, Ditrói F, Takács S, Seddik U et al (2012) Cross-section measurements and nuclear model calculation for proton induced nuclear reaction on zirconium. Appl Radiat Isot 70:257–262CrossRefGoogle Scholar
  25. 25.
    Pritychenko B, Sonzogni A (2016) Brookhaven National Laboratory, National Nuclear Data Center (NNDC), Q-value Calculator (QCalc). http://www.nndc.bnl.gov/qcalc. Accessed 10 Jan 2017
  26. 26.
    Wooten AL, Lewis BC, Lapi SE (2015) Cross-sections for (p, x) reactions on natural chromium for the production of 52,52m,54Mn radioisotopes. Appl Radiat Isot 96:154–161CrossRefGoogle Scholar
  27. 27.
    Al-Saleh FS, Al-Harbi AA, Azzam A (2006) Excitation functions of proton induced nuclear reactions on natural copper using a medium-sized cyclotron. Radiochim Acta 94:391–396CrossRefGoogle Scholar
  28. 28.
    Takács S, Tárkányi F, Sonck M, Hermanne A (2002) New cross-sections and intercomparison of proton monitor reactions on Ti, Ni and Cu. Nucl Instrum Methods Phys Res B 188:106–111CrossRefGoogle Scholar
  29. 29.
    Ziegler JF, Ziegler MD, Biersack JP (2008) The stopping and range of ions in matter, SRIM—Version 2008.04 (2008) www.SRIM.org. Accessed 27 Apr 2017
  30. 30.
    Firestone RB, Shirley VS (eds) (1999) Table of isotopes, 8th edn. Wiley, New YorkGoogle Scholar
  31. 31.
    Ricci E, Hahn RL (1965) Theory and experiment in rapid, sensitive helium-3 activation analysis. Anal Chem 37(6):742–748CrossRefGoogle Scholar
  32. 32.
    Ghosh M, Swain KK, Chavan TA, Wagh DN, Verma R (2015) Determination of gold and silver in dross using EDXRF technique. X-Ray Spectrom 44:13–15CrossRefGoogle Scholar
  33. 33.
    Hubbell JH, Trehan PN, Singh N, Chand B, Mehta D, Garg ML et al (1994) A review, bibliography, and tabulation of K, L, and higher atomic shell X-ray fluorescence yields. J Phys Chem Ref Data 23(2):339–364CrossRefGoogle Scholar
  34. 34.
    De Corte F, Simonits A (1989) J Radioanal Nucl Chem 133:43–130CrossRefGoogle Scholar
  35. 35.
    Pagden I, Pearson G, Bewers J (1971) An isotope catalogue for instrumental activation analysis, I. J Radioanal Chem 8:127–188CrossRefGoogle Scholar
  36. 36.
  37. 37.
    Skoog DA, West D, Holler FJ, Crouch SR (2014) Fundamentals of analytical chemistry, 9th edn. Brooks Cole, CorvallisGoogle Scholar
  38. 38.

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Analytical Chemistry DivisionBhabha Atomic Research Centre, Variable Energy Cyclotron CentreKolkataIndia
  2. 2.Analytical Chemistry DivisionBhabha Atomic Research CentreTrombayIndia

Personalised recommendations