Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 2, pp 1287–1296 | Cite as

Experimental tests on the reduction of radon decay products’ unattached fraction in indoor environment and its influence on effective dose

  • Romolo Remetti
  • Matteo Massarelli
  • Francesco Cardellini
Article
  • 73 Downloads

Abstract

The work studies the influence of how the unattached fraction of radon daughters can influence effective dose. An experimental work was carried out for measuring the unattached fraction in presence of different size aerosols, and for each test an estimate of the effective dose was given. Tests were carried out at fixed radon concentrations and with different size aerosols. Potential alpha energy concentrations of both total and free fractions were measured, together with radon and aerosols air concentrations. Results showed increments of the equilibrium factor, reduction of the unattached fraction, and decrease of the effective dose.

Keywords

Radon Radon decay products Indoor air quality Unattached fraction Equilibrium factor Effective dose 

References

  1. 1.
    Bochicchio F (2014) Protection from radon exposure at home and at work in the Directive 2013/59/Euratom. Radiat Prot Dosim 160:8–13CrossRefGoogle Scholar
  2. 2.
    Planinić J, Faj D, Vuković B, Faj Z, Radolić V, Suveliak B (2003) Radon exposure and lung cancer. J Radioanal Nucl Chem 256:349–352CrossRefGoogle Scholar
  3. 3.
    United Nations Scientific Committee on the Effects of Atomic Radiations (UNSCEAR) (2006) Annex E—sources-to-effects assessment for radon in homes and workplaces. UNSCEAR 2006 report: effects of ionizing radiation. UN Publications, GenevaGoogle Scholar
  4. 4.
    Pacheco-Torgal F (2012) Indoor radon: an overview on a perennial problem. Build Environ 58:270–277CrossRefGoogle Scholar
  5. 5.
    Hunter N, Muirhead CR, Bochicchio F, Haylock RGE (2015) Calculation of lifetime lung cancer risks associated with radon exposure, based on various models and exposure scenarios. J Radiol Prot 35:539–555CrossRefGoogle Scholar
  6. 6.
    ICRP (2007) Valentin J (ed) The 2007 recommendations of the International Commission on Radiological Protection. Annals of the ICRP, ICRP publication 103, 37(2–4)Google Scholar
  7. 7.
    National Research Council (NRC) (1999) Health effects of exposure to radon: BEIR VI. The National Academies Press, Washington, DCGoogle Scholar
  8. 8.
    World Health Organization (WHO) (2009) WHO handbook on indoor radon—a public health perspective. WHO International Radon Project, GenevaGoogle Scholar
  9. 9.
    ICRP (1987) Smith H (ed) Lung cancer risk from indoor exposures to radon daughters. Annals of the ICRP, ICRP publication 50, 17(1)Google Scholar
  10. 10.
    Chen CJ, Liu CC, Lin YM (1998) Measurement of equilibrium factor and unattached fraction of radon progeny in Kaohsiung, Taiwan. Appl Radiat Isot 49(1998):1613–1618CrossRefGoogle Scholar
  11. 11.
    Martinez T, Lartigue J, Navarrete M, Cabrera L, Gonzalez P, Ramirez A, Elizarraras V (1998) Long term equilibrium factor indoor radon measurements. J Radioanal Nucl Chem 236:231–237CrossRefGoogle Scholar
  12. 12.
    Bochicchio F, Zunic ZS, Carpentieri C, Antignani S, Venoso G, Carelli V, Cordedda C, Veselinovic N, Tollefsen T, Bossew P (2014) Radon in indoor air of primary schools: a systematic survey to evaluate factors affecting radon concentration levels and their variability. Indoor Air 24:315–326CrossRefGoogle Scholar
  13. 13.
    ICRP (1993) Clarke RH, Dunster HJ, Jacobi W, Osborne RV, Protection against radon-222 at home and at work. Annals of the ICRP, ICRP publication 65, 23(2)Google Scholar
  14. 14.
    Vargas A, Ortega X, Porta M (2000) Dose conversion factor for radon concentration in indoor environments using a new equation for the F-fp correlation. Health Phys 78(1):80–85CrossRefGoogle Scholar
  15. 15.
    Porstendörfer J (2001) Physical parameters and dose factors of the radon and thoron decay products. Radiat Prot Dosim 94:365–373CrossRefGoogle Scholar
  16. 16.
    Nikezic D, Yu KN (2001) Micro-dosimetric calculation of absorption fraction and the resulted dose conversion factor for radon progeny. Radiat Environ Biophys 40:207–211CrossRefGoogle Scholar
  17. 17.
    Marsh JW, Harrison JD, Laurier D, Blanchardon E, Paquet F, Tirmarche M (2010) Dose conversion factors for radon: recent developments. Health Phys 99:511–516CrossRefGoogle Scholar
  18. 18.
    ICRP (2010) Tirmarche M, Harrison JD, Laurier D, Paquet F, Blanchardon E, Marsh JW, Lung cancer risk from radon and progeny and statement on radon. Annals of the ICRP, ICRP publication 115, 40(1)Google Scholar
  19. 19.
    ICRP (1994) Bair WJ, Human respiratory tract model for radiological protection. Annals of the ICRP, ICRP publication 66, 24(1–3)Google Scholar
  20. 20.
    ICRP (2006) Métivier H, Human alimentary tract model for radiological protection. Annals of the ICRP, ICRP Publication 100, 36(1–2)Google Scholar
  21. 21.
    ICRP (2015) Paquet F, Etherington G, Bailey MR, Leggett RW, Lipsztein J, Bolch W, Eckerman KF, Harrison JD, Occupational intakes of radionuclides: Part 1. Annals of the ICRP, ICRP publication 130, 44(2)Google Scholar
  22. 22.
    Leggett RW, Eckerman KF (2001) A systemic biokinetic model for polonium. Sci Total Environ 275(1–3):109–125CrossRefGoogle Scholar
  23. 23.
    Rabinowitz M (1998) Historical perspective on lead biokinetic models. Environ Health Perspect 106(Suppl 6):1461–1465CrossRefGoogle Scholar
  24. 24.
    Fowler BA, Vouk VB (2014) Bismuth. In: Nordberg G, Fowler B, Nordberg M (eds) Handbook on the toxicology of metals, 4th edn. Elsevier, New YorkGoogle Scholar
  25. 25.
    ICRP (2015) ICRP main commission meeting, April 13–17, 2015, Sidney, Australia. http://www.icrp.org/admin/Summary%20of%20April%202015%20Main%20Commission%20Meeting%20Sydney.pdf. Accessed 16 Sept 2017
  26. 26.
    Yasuoka Y, Ishikawa T, Tokonami S, Takahashi H, Sorimachi A, Shinogi M (2009) Radon mitigation using an air cleaner. J Radioanal Nucl Chem 279:885–891CrossRefGoogle Scholar
  27. 27.
    Vargas Trassierra C, Stabile L, Cardellini F, Morawska L, Buonanno G (2016) Effect of idoor-generated airborne particles on radon progeny dynamics. J Hazard Mater 314:155–163CrossRefGoogle Scholar
  28. 28.
    Holy K, Sykora I, Chudy M, Polaskova A, Fejda J (1995) Radionuclide content in some building materials and their radon exhalation. J Radioanal Nucl Chem 199:251–263CrossRefGoogle Scholar
  29. 29.
    Desideri D, Bruno MR, Roselli C (2004) 222Rn determination in some thermal baths of a central eastern Italian area. J Radioanal Nucl Chem 261:37–41CrossRefGoogle Scholar
  30. 30.
    Plastino W, Laubenstein M, Nisi S, Peresan A, Povinec PP, Balata M, Bella F, Cardarelli A, Ciarletti M, Copia L, De Deo M, Gallese B, Ioannucci L (2013) Uranium, radium and tritium groundwater monitoring at INFN-Gran Sasso National Laboratory, Italy. J Radioanal Nucl Chem 295:585–592CrossRefGoogle Scholar
  31. 31.
    Vaupotič J, Kobal I (2002) Radon dose estimates assisted by continuous measurements. J Radioanal Nucl Chem 253:267–274CrossRefGoogle Scholar
  32. 32.
    Reimer GM (2008) Radon measurement uncertainty: comparison between passive short-term and active measurement. J Radioanal Nucl Chem 277:249–251CrossRefGoogle Scholar
  33. 33.
    Remetti R, Gigante GE (2010) Experimental study on the influence of natural and artificial ventilation on indoor radon concentration. G Ital Med Lav Ergon 32:245–247Google Scholar
  34. 34.
  35. 35.
  36. 36.
  37. 37.
    Stabile L, Fuoco FC, Buonanno G (2012) Characteristics of particles and black carbon emitted by combustion of incenses, candles and anti-mosquito products. Build Environ 56:184–191CrossRefGoogle Scholar
  38. 38.
    Stajic JM, Nikezic D (2015) Analysis of radon and thoron progeny measurements based on air filtration. Radiat Prot Dosim 163:333–340CrossRefGoogle Scholar
  39. 39.
    Bennet WD, Zeman KL, Jarabek AM (2003) Nasal contribution to breathing with exercise: effect of race and gender. J Appl Physiol 95:497–503CrossRefGoogle Scholar
  40. 40.
    Papastefanou C (2008) Radioactive aerosols, 1st edn. Elsevier, New York. ISBN 9780080555980Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Department of Basic and Applied Sciences for EngineeringSapienza University of RomeRomeItaly
  2. 2.ENEA, Casaccia Research CentreNational Institute of Ionizing Radiation MetrologyRomeItaly

Personalised recommendations