Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 2, pp 1425–1444 | Cite as

Activation cross sections of proton induced nuclear reactions on neodymium up to 65 MeV

  • F. Tárkányi
  • A. Hermanne
  • F. Ditrói
  • S. Takács


In the frame of a systematic study of the activation cross sections of charged particle induced nuclear reactions on rare earths for production of therapeutic radionuclides, proton induced reactions on neodymium were measured up to 65 MeV energy, above 45 MeV for the first time. The excitation functions of the natNd(p,x)150,149,148m,148g,146,144,143,141Pm, 149,147,141,140,139m,138Nd, 142,138mPr and 139gCe nuclear reactions were assessed by using stacked foil activation technique and high resolution γ-spectrometry. The excitation functions were compared to the theoretical predictions, available in the TENDL-2015 library based on latest version of the TALYS code. The application of the data for medical isotope production is shortly discussed.


Natural neodymium target Proton irradiation Pm, Nd, Pr, and Ce radioisotopes Cross section Physical yield 



This work was done in the frame of MTA-FWO (Vlaanderen) research projects. The authors acknowledge the support of research projects and of their respective institutions in providing the materials and the facilities for this work.


  1. 1.
    Azaiez F, Bracco A, Dobeš J, Jokinen A, Körner G-E, Maj A, Murphy A, Van Duppen P (2013) Nuclear physics for medicine. Nuclear Physics European Collaboration Committee (NuPECC), StrassburgGoogle Scholar
  2. 2.
    Stocklin G, Qaim SM, Rosch F (1995) The impact of radioactivity on medicine. Radiochim Acta 70–1:249–272Google Scholar
  3. 3.
    Qaim SM (2001) Therapeutic radionuclides and nuclear data. Radiochim Acta 89(4–5):297–302. doi: 10.1524/ract.2001.89.4-5.297 Google Scholar
  4. 4.
    Neves M, Kling A, Oliveira A (2005) Radionuclides used for therapy and suggestion for new candidates. J Radioanal Nucl Chem 266(3):377–384. doi: 10.1007/s10967-005-0920-5 CrossRefGoogle Scholar
  5. 5.
    Uusijarvi H, Bernhardt P, Ericsson T, Forssell-Aronsson E (2006) Dosimetric characterization of radionuclides for systemic tumor therapy: influence of particle range, photon emission, and subcellular distribution. Med Phys 33(9):3260–3269. doi: 10.1118/1.2229428 CrossRefGoogle Scholar
  6. 6.
    Beyer GJ (2000) Radioactive ion beams for biomedical research and nuclear medical application. Hyperfine Interact 129(1–4):529–553. doi: 10.1023/A:1012670018533 CrossRefGoogle Scholar
  7. 7.
    Rosch F (2007) Radiolanthanides in endoradiotherapy: an overview. Radiochim Acta 95(6):303–311. doi: 10.1524/ract.2007.95.6.303 CrossRefGoogle Scholar
  8. 8.
    Zalutsky MR (2011) Radionuclide therapy. In: Vértes A, Nagy S, Klencsár Z (eds) Handbook of nuclear chemistry, vol 4. Springer, New York, p 2180Google Scholar
  9. 9.
    Uusijarvi H, Bernhardt P, Rosch F, Maecke HR, Forssell-Aronsson E (2006) Electron- and positron-emitting radiolanthanides for therapy: aspects of dosimetry and production. J Nucl Med 47(5):807–814Google Scholar
  10. 10.
    Tárkányi F, Takács S, Ditrói F, Hermanne A, Yamazaki H, Baba M, Mohammadi A, Ignatyuk AV (2014) Activation cross-sections of deuteron induced nuclear reactions on neodymium up to 50 MeV. Nucl Instrum Methods Phys Res Sect B 325:15–26. doi: 10.1016/j.nimb.2014.01.024 CrossRefGoogle Scholar
  11. 11.
    Tarkanyi F, Hermanne A, Ditroi F, Takacs S (2017) Activation cross section data of proton induced nuclear reactions on lanthanum in the 34-65 MeV energy range and application for production of medical radionuclides. J Radioanal Nucl Chem 312(3):691–704. doi: 10.1007/s10967-017-5253-7 CrossRefGoogle Scholar
  12. 12.
    Tarkanyi F, Takacs S, Ditroi F, Csikai J, Hermanne A, Ignatyuk AV (2013) Activation cross-section measurement of deuteron induced reactions on cerium for biomedical applications and for development of reaction theory. Nucl Instrum Methods Phys Res Sect B 316:22–32. doi: 10.1016/j.nimb.2013.08.031 CrossRefGoogle Scholar
  13. 13.
    Tárkányi F, Hermanne A, Ditrói F, Takács S, Spahn I, Spellerberg S (2017) Activation cross-section measurement of proton induced reactions on cerium. Nucl Instrum Methods Phys Res Sect B (submitted)Google Scholar
  14. 14.
    Hermanne A, Tárkányi F, Takács S, Ditrói F, Baba M, Ohtshuki T, Spahn I, Ignatyuk AV (2009) Excitation functions for production of medically relevant radioisotopes in deuteron irradiations of Pr and Tm targets. Nucl Instrum Methods Phys Res Sect B 267(5):727–736CrossRefGoogle Scholar
  15. 15.
    Hermanne A, Tarkanyi F, Takacs S, Ditroi F (2016) Extension of excitation functions up to 50 MeV for activation products in deuteron irradiations of Pr and Tm targets. Nucl Instrum Methods Phys Res Sect B 383:81–88. doi: 10.1016/j.nimb.2016.06.010 CrossRefGoogle Scholar
  16. 16.
    Lebeda O, Lozza V, Schrock P, Stursa J, Zuber K (2012) Excitation functions of proton-induced reactions on natural Nd in the 10–30 MeV energy range, and production of radionuclides relevant for double-beta decay. Phys Rev C 85(1):014602. doi: 10.1103/Physrevc.85.014602 CrossRefGoogle Scholar
  17. 17.
    Lebeda O, Lozza V, Petzoldt J, Stursa J, Zdychova V, Zuber K (2014) Excitation functions of proton-induced reactions on natural Nd and production of radionuclides relevant for double beta decay: completing measurement in 5-35 MeV energy range. Nucl Phys A 929:129–142. doi: 10.1016/j.nuclphysa.2014.06.010 CrossRefGoogle Scholar
  18. 18.
    Yang S, Kim K, Kim G, Song T, Lee Y Measurement of production cross sections of neodymium induced by proton beam. In: Proceedings of the KNS 2014 spring meeting, Republic of Korea, 2014. KNS, pp 1CD-ROMGoogle Scholar
  19. 19.
    Yang SC, Kim K, Song TY, Lee YO, Kim G (2015) Production cross sections of products in the proton induced reactions on Nd-nat in the energy region up to 45 MeV. Nucl Instrum Methods Phys Res Sect B 362:142–150. doi: 10.1016/j.nimb.2015.09.061 CrossRefGoogle Scholar
  20. 20.
    Yang SC, Kim G, Zaman M, Kim K, Song TY, Lee YO, Shin SG, Key YU, Cho MH, Pham DK, Nguyen VO, Naik H, Ro TI (2014) Isomeric yield ratios of Pm-148 from the Sm-nat(gamma, x) and the Nd-nat(p, xn) reactions. J Radioanal Nucl Chem 302(1):467–476. doi: 10.1007/s10967-014-3284-x CrossRefGoogle Scholar
  21. 21.
    Muminov VA, Mukhammedov S, Vasidov A (1980) Possibilities of proton-activation analysis for determining the content of elements from short-lived radionuclides. Atom Energy 49(2):540–544. doi: 10.1007/Bf01121617 CrossRefGoogle Scholar
  22. 22.
    Dmitriev PP, Molin GA (1981) Radioactive nuclide yields for thick target at 22 MeV proton energy. Vop At Nauki i Tekhn SerYadernye Konstanty 44(5):43Google Scholar
  23. 23.
    Hermanne A, Tárkányi F, Takács S, Ditrói F, Szücs Z, Brezovcsik K (2016) Experimental cross-sections for proton induced nuclear reactions on mercury up to 65 MeV. Nucl Instrum Methods Phys Res Sect B 378:12–24. doi: 10.1016/j.nimb.2016.04.016 CrossRefGoogle Scholar
  24. 24.
    Tárkányi F, Takács S, Gul K, Hermanne A, Mustafa MG, Nortier M, Oblozinsky P, Qaim SM, Scholten B, Shubin YN, Youxiang Z (2001) Beam monitor reactions (Chapter 4). Charged particle cross-section database for medical radioisotope production: diagnostic radioisotopes and monitor reactions. TECDOC 1211, vol 1211. IAEAGoogle Scholar
  25. 25.
  26. 26.
    Székely G (1985) Fgm—a flexible gamma-spectrum analysis program for a small computer. Comput Phys Commun 34(3):313–324. doi: 10.1016/0010-4655(85)90008-6 CrossRefGoogle Scholar
  27. 27.
    Tárkányi F, Szelecsényi F, Takács S (1991) Determination of effective bombarding energies and fluxes using improved stacked-foil technique. Acta Radiol Suppl 376:72Google Scholar
  28. 28.
    NuDat2 database (2.6) (2014) National Nuclear Data Center, Brookhaven National Laboratory.
  29. 29.
    Q-value calculator (2003) NNDC, Brookhaven National Laboratory.
  30. 30.
    Andersen HH, Ziegler JF (1977) Hydrogen stopping powers and ranges in all elements. The stopping and ranges of ions in matter, vol 3. Pergamon Press, New YorkGoogle Scholar
  31. 31.
    International-Bureau-of-Weights-and-Measures (1993) Guide to the expression of uncertainty in measurement, 1st edn. International Organization for Standardization, GenèveGoogle Scholar
  32. 32.
    Bonardi M (1987) The contribution to nuclear data for biomedical radioisotope production from the Milan cyclotron facility. Paper presented at the consultants meeting on data requirements for medical radioisotope production, Tokyo, Japan,Google Scholar
  33. 33.
    Otuka N, Takács S (2015) Definitions of radioisotope thick target yields. Radiochim Acta 103(1):1–6. doi: 10.1515/ract-2013-2234 CrossRefGoogle Scholar
  34. 34.
    Koning AJ, Rochman D (2012) Modern nuclear data evaluation with the TALYS code system. Nucl Data Sheets 113:2841CrossRefGoogle Scholar
  35. 35.
    Koning AJ, Rochman D, Kopecky J, Sublet JC, Bauge E, Hilaire S, Romain P, Morillon B, Duarte H, van der Marck S, Pomp S, Sjostrand H, Forrest R, Henriksson H, Cabellos O, Goriely S, Leppanen J, Leeb H, Plompen A, Mills R (2015) TENDL-2015: TALYS-based evaluated nuclear data library. Nuclear Research and Consultancy Group (NRG), PettenGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Institute for Nuclear ResearchHungarian Academy of Sciences (ATOMKI)DebrecenHungary
  2. 2.Cyclotron LaboratoryVrije Universiteit Brussel (VUB)BrusselsBelgium

Personalised recommendations