Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 2, pp 555–572 | Cite as

Plastic scintillators and related analytical procedures for radionuclide analysis

  • Alex Tarancón
  • Héctor Bagán
  • José F. García
Article
  • 176 Downloads

Abstract

This article is a general overview of the potential capacities of plastic scintillators in radionuclide activity determination. Plastic scintillation (PS) behaves as liquid scintillation does, but with some differences related to the solid state of plastic scintillators. These differences are the base of some drawbacks and some advantages, related to the use of PS. This article describes how these capacities are affected by PS composition, sample preparation, scintillation mechanisms and quenching calibration procedures. It also describes the capabilities for alpha and beta emitter determination and discrimination through the use of PS microspheres and PS resins and their application to different types of samples and radionuclide determination.

Keywords

Plastic scintillators Scintillating extractive resins Plastic scintillating resins Radionuclides 

Notes

Acknowledgements

We thank the Spanish Ministerio de Economia y Competitividad (MINECO) for financial support under CTM2014-02020 HAR2014-56526-R, and the Catalan Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) for financial support under 2014-SGR-1277.

References

  1. 1.
    Kallmann H (1950) Scintillation counting with solutions. Phys Rev 78:621–622CrossRefGoogle Scholar
  2. 2.
    Steinberg D (1958) Radioassay of carbon-14 in aqueous solutions using a liquid scintillation spectrometer. Nature 182:740–741CrossRefGoogle Scholar
  3. 3.
    Schorr MG, Torney FL (1950) Solid non-crystalline scintillation phosphors. Phys Rev 80:474CrossRefGoogle Scholar
  4. 4.
    Brooks FD, Pringle RW, Funt BL (1960) Pulse shape discrimination in a plastic scintillator. IRE Trans Nucl Sci 7:35–38.  https://doi.org/10.1109/TNS2.1960.4315733 CrossRefGoogle Scholar
  5. 5.
    Birks JB (1964) The theory and practice of scintillation counting. Pergamon Press, OxfordGoogle Scholar
  6. 6.
    Reynolds GT, Harrison FB, Salvine G (1950) Liquid scintillation counters. Phys Rev 78:488CrossRefGoogle Scholar
  7. 7.
    Gibsson JAB, Lally AE (1971) Liquid scintillation counting as an analytical tool. Analyst 96:681–688CrossRefGoogle Scholar
  8. 8.
    Horrocks DL (1974) Applications of liquid scintillation counting. Academic Press, New York San Francisco LondonGoogle Scholar
  9. 9.
    L’Annunziata MF (2013) Handbook of radioactivity analysis. Academic Press, San DiegoGoogle Scholar
  10. 10.
    Abel KH, Schilk AJ, Brown DP et al (1995) Characterization and calibration of a large area beta scintillation detector for determination of Sr-90. J Radioanal Nucl Chem 193:99–106CrossRefGoogle Scholar
  11. 11.
    Nilsson J, Isaksson M (2011) A comparison between Monte Carlo-calculated and -measured total efficiencies and energy resolution for large plastic scintillators used in whole-body counting. Radiat Prot Dosimetry 144:555–559CrossRefGoogle Scholar
  12. 12.
    Siciliano ER, Ely JH, Kouzes RT et al (2005) Comparison of PVT and NaI(Tl) scintillators for vehicle portal monitor applications. Nucl Instrum Methods Phys Res Sect A 550:647–674CrossRefGoogle Scholar
  13. 13.
    Kirov AS, Hurlbut C, Dempsey JF et al (1999) Towards two-dimensional brachytherapy dosimetry using plastic scintillator: new highly efficient water equivalent plastic scintillator materials. Med Phys 26:1515–1523CrossRefGoogle Scholar
  14. 14.
    Lambert J et al (2006) A plastic scintillation dosimeter for high dose rate brachytherapy. Phys Med Biol 51:5505CrossRefGoogle Scholar
  15. 15.
    Beddar AS (2006) Plastic scintillation dosimetry and its application to radiotherapy. Radiat Meas 41:S124–S133CrossRefGoogle Scholar
  16. 16.
    Bosworth N, Towers P (1989) Scintillation proximity assay. Nature 341:167–168CrossRefGoogle Scholar
  17. 17.
    Zaitseva N, Rupert BL, PaweLczak I et al (2012) Plastic scintillators with efficient neutron/gamma pulse shape discrimination. Nucl Instrum Methods Phys Res Sect A 668:88–93CrossRefGoogle Scholar
  18. 18.
    Pozzi SA, Mullens JA, Mihalczo JT (2004) Analysis of neutron and photon detection position for the calibration of plastic (BC-420) and liquid (BC-501) scintillators. Nucl Instrum Methods Phys Res Sect A 524:92–101CrossRefGoogle Scholar
  19. 19.
    Hamel M, Simic V, Normand S (2008) Fluorescent 1,8-naphthalimides-containing polymers as plastic scintillators. An attempt for neutron/gamma discrimination. React Funct Polym 68:1671–1681CrossRefGoogle Scholar
  20. 20.
    EPA Environmental Protection Agency (2001) Rule 40 CFR part 266:  storage, treatment, transportation, and disposal of mixed-wasteGoogle Scholar
  21. 21.
    Hsu J, Krieger JK (1991) Mixed waste: a review from a generators perspective. In: Ross H, Noakes JE, Spaulding JD (eds) Liq. Scintill. Count. Org. Scintill. Int. Conf. New Trends Liq. Scintill. Org. Scintill. Lewis Publishers., pp 557–600Google Scholar
  22. 22.
    Kalbhen DA, Tarkkanen VJ (1984) Review of the evolution of safety, ecological and economical aspects of LSC materials and techniques. In: Adv. scintill. counting. University of Alberta, pp 66–70Google Scholar
  23. 23.
    Tarancon A, García JF, Rauret G (2002) Mixed waste reduction in radioactivity determination by using plastic scintillators. Anal Chim Acta 463:125–134CrossRefGoogle Scholar
  24. 24.
    Bertrand GHV, Hamel M, Sguerra F (2014) Current status on plastic scintillators modifications. Chemistry 20:15660–15685CrossRefGoogle Scholar
  25. 25.
    Santiago LM, Bagán H, Tarancón A, Garcia JF (2013) Synthesis of plastic scintillation microspheres: evaluation of scintillators. Nucl Instrum Methods Phys Res Sect A 698:106–116CrossRefGoogle Scholar
  26. 26.
    Bagán H, Tarancón A, Ye L, García JF (2014) Crosslinked plastic scintillators: a new detection system for radioactivity measurement in organic and aggressive media. Anal Chim Acta 852:13–19CrossRefGoogle Scholar
  27. 27.
    Santiago LM, Bagán H, Tarancón A, Garcia JF (2014) Synthesis of plastic scintillation microspheres: alpha/beta discrimination. Appl Radiat Isot 93:18–28CrossRefGoogle Scholar
  28. 28.
  29. 29.
  30. 30.
    Tarancón A, García JF, Rauret G (2003) Reusability of plastic scintillators used in beta emitter activity determination. Appl Radiat Isot 59:373–376CrossRefGoogle Scholar
  31. 31.
    Broda R, Cassette P, Kossert K (2007) Radionuclide metrology using liquid scintillation counting. Metrologia 44:S36–S52CrossRefGoogle Scholar
  32. 32.
    Tarancón A, Alonso E, García JF, Rauret G (2002) Comparative study of quenching correction procedures for 90Sr/90Y determination by Cerenkov, liquid scintillation and plastic scintillation techniques. Anal Chim Acta 471:135–143CrossRefGoogle Scholar
  33. 33.
    Santiago LM, Bagán H, Tarancón A et al (2013) Systematic study of particle quenching in organic scintillators. Nucl Instrum Methods Phys Res Sect A 698:26–36CrossRefGoogle Scholar
  34. 34.
    Tarancón A, Barrera J, Santiago LM et al (2015) Application of the CIEMAT–NIST method to plastic scintillation microspheres. Appl Radiat Isot 98:13–22CrossRefGoogle Scholar
  35. 35.
    Santiago LM, Tarancón A, García JF (2016) Influence of preparation parameters on the synthesis of plastic scintillation microspheres and evaluation of sample preparation. Adv Powder Technol 27:1309–1317CrossRefGoogle Scholar
  36. 36.
    Furuta E, Iwasaki N, Kato Y, Tomozoe Y (2016) A new tritiated water measurement method with plastic scintillator pellets. Isot Environ Health Stud 52:560–566CrossRefGoogle Scholar
  37. 37.
    Nähle O, Kossert K (2010) Comparison of the TDCR method and the CIEMAT/NIST method for the activity determination of beta emitting nuclides. Presentation in conference LSC2010, Adv. Liq. Scintill. Spectrom. 6–10 Sept. 2010, ParisGoogle Scholar
  38. 38.
    Cassette P, Broda R, Hainos D, Terlikowska T (2000) Analysis of detection-efficiency variation techniques for the implementation of the TDCR method in liquid scintillation counting. Appl Radiat Isot 52:643–648CrossRefGoogle Scholar
  39. 39.
    Grau Malonda A (1999) Free parameter models in liquid scintillation counting. Colecc. Doc. CIEMATGoogle Scholar
  40. 40.
    Pochwalski K, Broda R, Radoszewski T (1988) Standardization of pure beta emitters by liquid-scintillation counting. Appl Radiat Isot 39:165–172CrossRefGoogle Scholar
  41. 41.
    Sanz AT, Kossert K (2011) Application of a free parameter model to plastic scintillation samples. Nucl Instrum Methods Phys Res Sect A 648:124–131CrossRefGoogle Scholar
  42. 42.
    Jobbágy V, Waetjen U, Meresova J (2010) Current status of gross alpha/beta activity analysis in water samples: a short overview of methods. J Radioanal Nucl Chem 286:393–399CrossRefGoogle Scholar
  43. 43.
    Pates JM, Cook GT, MacKenzie AB, Passo CJ (1998) Implications of beta energy and quench level for alpha/beta liquid scintillation spectrometry calibration. Analyst 123:2201–2207CrossRefGoogle Scholar
  44. 44.
    Hawkes NP, Taylor GC (2013) Analysis of the pulse shape mechanism in a plastic scintillator with efficient neutron/gamma pulse shape discrimination. Nucl Instrum Methods Phys Res Sect A 729:522–526CrossRefGoogle Scholar
  45. 45.
    Ranucci G (1995) An analytical approach to the evaluation of the pulse shape discrimination properties of scintillators. Nucl Instrum Methods Phys Res A 354:389–399CrossRefGoogle Scholar
  46. 46.
    Bagán H, Tarancón A, Rauret G, García JF (2010) Alpha/beta pulse shape discrimination in plastic scintillation using commercial scintillation detectors. Anal Chim Acta 670:11–17.  https://doi.org/10.1016/j.aca.2010.04.055 CrossRefGoogle Scholar
  47. 47.
    Rodriguez Barquero L, Grau Carles A (1998) The influence of the primary solute on alpha/beta discrimination. Appl Radiat Isot 49:1065–1068CrossRefGoogle Scholar
  48. 48.
    DeVol TA, Egorov OB, Roane JE et al (2001) Extractive scintillating resin for 99Tc quantification in aqueous solutions. J Radioanal Nucl Chem 249(181):189Google Scholar
  49. 49.
    Duval CE, DeVol TA, Wade EC et al (2016) Stability of polymeric scintillating resins developed for ultra-trace level detection of alpha- and beta-emitting radionuclides. J Radioanal Nucl Chem 310:583–588CrossRefGoogle Scholar
  50. 50.
    Roane JE, DeVol TA (2002) simultaneous separation and detection of actinides in acidic solutions using an extractive scintillating resin. Anal Chem 74:5629–5634CrossRefGoogle Scholar
  51. 51.
    Song Y, Du Y, Lv D et al (2014) Macrocyclic receptors immobilized to monodisperse porous polymer particles by chemical grafting and physical impregnation for strontium capture: a comparative study. J Hazard Mater 274:221–228CrossRefGoogle Scholar
  52. 52.
    McLain DR, Mertz CJ, Sudowe R (2016) A performance comparison of commercially available strontium extraction chromatography columns. J Radioanal Nucl Chem 307:1825–1831CrossRefGoogle Scholar
  53. 53.
    Ye L, Ramström O, Mosbach K (1998) Molecularly imprinted polymeric adsorbents for byproduct removal. Anal Chem 70:2789–2795CrossRefGoogle Scholar
  54. 54.
    Alexander C, Andersson HS, Andersson LI et al (2006) Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. J Mol Recognit 19:106–180CrossRefGoogle Scholar
  55. 55.
    Duval CE, DeVol TA, Husson SM (2016) Extractive scintillating polymer sensors for trace-level detection of uranium in contaminated ground water. Anal Chim Acta 947:1–8CrossRefGoogle Scholar
  56. 56.
    Bagán H, Hartvig S, Tarancón A et al (2009) Plastic vs. liquid scintillation for 14C radiotracers determination in high salt matrices. Anal Chim Acta 631:229–236CrossRefGoogle Scholar
  57. 57.
    Bagán H, Tarancón A, Rauret G, García JF (2011) Radiostrontium separation and measurement in a single step using plastic scintillators plus selective extractants. Application to aqueous sample analysis. Anal Chim Acta 686:50–56CrossRefGoogle Scholar
  58. 58.
    Bagán H, Tarancón A, Stavsetra L et al (2012) Determination of oil reservoir radiotracer (S14CN-) in a single step using a plastic scintillator extractive resin. Anal Chim Acta 736:30–35CrossRefGoogle Scholar
  59. 59.
    Barrera J, Tarancón A, Bagán H, García JF (2016) A new plastic scintillation resin for single-step separation, concentration and measurement of technetium-99. Anal Chim Acta 936:259–266Google Scholar
  60. 60.
    Lluch E, Barreda J, Tarancón A et al (2016) Analysis of 210Pb in water samples with plastic scintillation resins. Anal Chim Acta 940:38–45CrossRefGoogle Scholar
  61. 61.
    Mitev K, Dimitrova I, Tarancón A et al (2016) Pilot study of the application of plastic scintillation microspheres to Rn-222 detection and measurement. IEEE Trans Nucl Sci 63:1209–1217CrossRefGoogle Scholar
  62. 62.
    Hofstetter KJ, Cable PR, Beals DM et al (1998) Field deployable tritium analysis system for ground and surface water measurements. J Radioanal Nucl Chem 233:201–205CrossRefGoogle Scholar
  63. 63.
    Egorov OB, O’Hara JWMJJWG (2006) Equilibration-based preconcentrating minicolumn sensors for trace level monitoring of radionuclides and metal ions in water without consumable reagents. Anal Chem 78:5480–5890CrossRefGoogle Scholar
  64. 64.
    O’Hara MJ, Burge SR, Grate JW (2009) Quantification of technetium-99 in complex groundwater matrixes using a radiometric preconcentrating minicolumn sensor in an equilibration-based sensing approach. Anal Chem 81:1068–1078CrossRefGoogle Scholar
  65. 65.
    Grate JW, Egorov OB, O’Hara MJ, DeVol TA (2008) Radionuclide sensors for environmental monitoring: from flow injection solid-phase absorptiometry to equilibration-based preconcentrating minicolumn sensors with radiometric detection. Chem Rev 108:543–562CrossRefGoogle Scholar
  66. 66.
    Schilk AJ, Knopf MA, Thompson RC et al (1994) Real-time, in situ detection of 90Sr and 238U in soils via scintillating-fiber-sensor technology. Nucl Instrum Methods Phys Res Sect A 353:477–481CrossRefGoogle Scholar
  67. 67.
    Tarancon A, Padro A, Garcia JF, Rauret G (2005) Development of a radiochemical sensor, Part 2: application to liquid effluents. Anal Chim Acta 538:241–249CrossRefGoogle Scholar
  68. 68.
    Wenzel U (1996) Online scintillation counting on Meltilex basis. J Radioanal Nucl Chem 203:87–96CrossRefGoogle Scholar
  69. 69.
    Lochny M, Ullrich W, Wenzel U (1998) Simple on-line monitoring of α- and β-emitters by solid scintillation counting. J Alloys Compd 271–273:31–37CrossRefGoogle Scholar
  70. 70.
    Villar M, Borràs A, Avivar J et al (2017) Fully automated system for 99Tc monitoring in hospital and urban residues: a simple approach to waste management. Anal Chem 89:5857–5863CrossRefGoogle Scholar
  71. 71.
    Chung KH, Kim H, Lim JM et al (2014) Rapid determination of radiostrontium in milk using automated radionuclides separator and liquid scintillation counter. J Radioanal Nucl Chem 304:293–300CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Alex Tarancón
    • 1
    • 2
  • Héctor Bagán
    • 1
  • José F. García
    • 1
  1. 1.Department of Chemical Engineering and Analytical ChemistryUniversity of BarcelonaBarcelonaSpain
  2. 2.Serra-Húnter ProgramGeneralitat de CatalunyaBarcelonaSpain

Personalised recommendations