Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 2, pp 1375–1381 | Cite as

Relative fission product yields in the USGS TRIGA MARK I reactor

Article
  • 54 Downloads

Abstract

Relative fission product yields have been determined for three sampling positions in the USGS TRIGA MARK I reactor through radiochemical analysis. The relative mass yield distribution for valley nuclides decreases with epithermal neutrons compared to thermal neutrons. Additionally, a proportionality constant which related the measured beta activity of a fission product to the number of fissions that occur in a sample of irradiated uranium was determined for the detector used in this study and used to determine the thermal and epithermal flux. These values agree well with a previous study which used activation foils to determine the flux.

Keywords

Fission products K-factor R value Post-irradiation analysis Separations 

Notes

Acknowledgements

The authors would like to express their sincere thanks to the reactor staff of the GSTR for their support, funding from the Colorado School of Mines, and the NRC Faculty Development Grant program, Grant Number NRC-HQ-11-G-38-0062.

References

  1. 1.
    Lisman FL, Maeck WJ, Rein JE (1970) Determination of nuclear fuel burnup from fission product analysis. Nucl Sci Eng 42:215–219CrossRefGoogle Scholar
  2. 2.
    Chadwick MB (2014) Fission yields and other diagnostics for nuclear performance. Nucl Data Sheets 120:297CrossRefGoogle Scholar
  3. 3.
    Robin M, Bouchard J, Frejaville G, Vidal R, Hageman R (1974) Importance of fission product nuclear data in burnup determination. International Atomic Energy Agency, ViennaGoogle Scholar
  4. 4.
    Laser M, Merz E (1974) Fission product nuclear data and environmental aspects of the nuclear fuel cycle. International Atomic Energy Agency, ViennaGoogle Scholar
  5. 5.
    Selby HD, Mac-Innes MR, Barr DW, Keksis AL, Meade RA, Burns CJ, Chadwick MB, Wallstrom TC (2010) Fission product data measured at Los Alamos for fission spectrum and thermal neutrons on 239Pu, 235U, 238U. Nucl Data Sheets 111(12):2891–2922. doi: 10.1016/j.nds.2010.11.002 CrossRefGoogle Scholar
  6. 6.
    Yarnell JL, Bendt PJ (1978) Calorimetric fission product decay heat measurements for 239Pu, 233U, and 235U—NUREG/CR-0349; LA-7452-MS. Los Alamos Scientific Laboratory, New MexicoGoogle Scholar
  7. 7.
    Keksis AL, Chadwick MB, Selby HD, Mac Innes MR, Barr DW, Meade RA, Burns CJ, Wallstrom TC (2011) Los Alamos National Laboratory fission basis. American Society for Testing and Materials, West ConshohockenGoogle Scholar
  8. 8.
    Ford GP, Norris AE (1975) Compilation of yields from neutron-induced fission of 232Th, 235U, 236U, 237Np, 238U, and 239Pu measured radiochemically at Los Alamos—LA-6129. Los Alamos Scientific Laboratory, New MexicoGoogle Scholar
  9. 9.
    Browne CI (1957) Resonance fission of U235. Phys Rev 107:1CrossRefGoogle Scholar
  10. 10.
    Kleinberg J (1990) Collected radiochemical and geochemical procedures—LA-1721, 5th edn. Los Alamos National Laboratory, New Mexico. doi: 10.2172/7003813
  11. 11.
    Lindner M (1965) Radiochemical purification procedures for the elements—UCRL-14258. Lawrence Radiation Laboratory, University of California, Livermore. doi: 10.2172/4577365
  12. 12.
    Hyde EK (1951) Radiochemical methods for the isolations of element 87 (Francium)—UCRL-1578. Radiation Laboratory, University of California, LivermoreGoogle Scholar
  13. 13.
    DeVoe JR (1960) The radiochemistry of cadmium—NAS-NS-3001. National Research Council, Committee on Nuclear Science, University of Michigan, Ann ArborGoogle Scholar
  14. 14.
    Finston HL, Kinsley MT (1961) The radiochemistry of cesium—NAS-NS-3035. Brookhaven National Lab, New YorkGoogle Scholar
  15. 15.
    Lee MH, Lee CW (2000) Preparation of alpha-emitting nuclides by electrodeposition. Nucl Instrum Methods Phys Res A 447(3):593–600CrossRefGoogle Scholar
  16. 16.
    Talvitie NA (1972) Electrodeposition of actinides for alpha spectrophotometric determination. Anal Chem 44(2):280–283CrossRefGoogle Scholar
  17. 17.
    Narayanan UI, Mason PB, Zebrowski JP, Rocca M, Frank IW (1995) The quantitative ion exchange separation of uranium from impurities. Department of Energy, ArgonneGoogle Scholar
  18. 18.
    Wisnyi LG, Pijanowski SW (1957) The thermal stability of uranium dioxide. Knolls Atomic Power Laboratory, SchenectadyGoogle Scholar
  19. 19.
    Koehl M, Rundberg R, Braley J (2015) Measured neutron flux parameters in the USGS TRIGA MARK I reactor. J Radioanal Nucl Chem 306(1):31–38. doi: 10.1007/s10967-015-4058-9 CrossRefGoogle Scholar
  20. 20.
    Ford GP, Gilmore JS, Ames DP, Balagna JP, Barnes JW, Comstock AA, Cowan GA, Elkin PB, Hoffman DC, Knobeloch GW, Lang EJ, Melnick MA, Minkkinen CO, Pollock BD, Sattizshn JE, Stanley CW, Warren B (1956) Mass yields from fission by neutrons between thermal and 14.7 MeV. LA-1997. Los Alamos Scientific Laboratory, New MexicoCrossRefGoogle Scholar
  21. 21.
    Yarnell JL, Bendt PJ (1977) Decay heat from products of 235U thermal fission by fast-response boil-off calorimetry. Los Alamos Scientific Laboratory, New MexicoGoogle Scholar
  22. 22.
    Cowan GA, Turkevich A, Browne CI (1961) Symmetry of neutron-induced U235 fission at individual resonances. Phys Rev A. doi: 10.1103/PhysRev.122.1286 Google Scholar
  23. 23.
    Cowan GA, Bayhurst BP, Prestwood RJ (1963) Symmetry of neutron-induced U235 fission at individual resonances. Part II. Phys Rev A. doi: 10.1103/PhysRev.130.2380 Google Scholar
  24. 24.
    Cowan GA, Bayhurst BP, Prestwood RJ, Gilmore JS, Knobeloch GW (1966) Symmetry of neutron-induced 239Pu fission at individual resonances. Phys Rev A. doi: 10.1103/PhysRev.144.979 Google Scholar
  25. 25.
    Faler KT, Tromp RL (1962) Variation in U235 mass yields at neutron energies below 0.5 ev—CONF-12-2. Phillips Petroleum Co., Atomic Energy Division, Idaho FallsGoogle Scholar
  26. 26.
    Levy HB, Hicks HG, Nervik WE, Stevenson PC, Niday JB, Armstrong JC Jr (1961) Radiochemical studies of neutron-induced fission of U235 and U238 and the two-mode fission hypothesis. Phys Rev A. doi: 10.1103/PhysRev.124.544 Google Scholar
  27. 27.
    Cowan GA, Bayhurst BP, Prestwood RJ, Gilmore JS, Knobeloch GW (1970) Symmetry of neutron-induced 235U fission at individual resonances. III. Phys Rev C 2:329CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Colorado School of MinesGoldenUSA
  2. 2.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations