Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 2, pp 1279–1285 | Cite as

Feasibility study for quantification of lanthanides in LiF–KCl salt by laser induced breakdown spectroscopy

  • S. Maji
  • Satendra Kumar
  • K. Sundararajan
  • K. Sankaran
Article
  • 110 Downloads

Abstract

Quantitative analysis of Pr, Nd, Ce, La and Sm were carried out simultaneously in LiF–KCl matrix using laser induced breakdown spectroscopic technique. Two non-interfering analytical emission lines have been identified for each lanthanide and using the internal standard method, the calibration curve is constructed from 0.3 to 5% for Pr, Nd, Ce and La and from 0.3 to 3% for Sm. Both the emission lines showed good regression coefficient (R 2) ranging from 0.9953 to 0.9996. The analytical capability of this method is studied through the correlation uncertainty of measured values with its known value in synthetic samples containing all the lanthanides in equal amount (0.5, 1 and 2%). Low value of correlation uncertainty (less than 10%) confirms that LIBS has a great potential for quantitative analysis of lanthanides in LiF–KCl matrix.

Keywords

Laser induced breakdown spectroscopy Lanthanides Quantitative analysis 

References

  1. 1.
    Sirven J-B, Bousquet B, Caniioni L, Sarger L, Tellier S, Potin-Gautier M, Le Hecho I (2006) Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis. Anal Bioanal Chem 385:256–262CrossRefGoogle Scholar
  2. 2.
    Pandhija S, Rai N, Rai A, Thakur S (2010) Contaminant concentration in environmental samples using LIBS and CF-LIBS. Appl Phys B 98:231–241CrossRefGoogle Scholar
  3. 3.
    Díaz Pace D, Gabriele N, Garcimuño M, D’Angelo C, Bertuccelli G, Bertuccelli D (2011) Analysis of minerals and rocks by laser-induced breakdown spectroscopy. Spectrosc Lett 44:399–411CrossRefGoogle Scholar
  4. 4.
    Davies C, Telle H, Williams A (1996) Remote in situ analytical spectroscopy and its applications in the nuclear industry. Fresenius J Anal Chem 355:895–899Google Scholar
  5. 5.
    Zheng H, Yueh FY, Miller T, Singh JP, Zeigler KE, Marra JC (2008) Analysis of plutonium oxide surrogate residue using laser-induced breakdown spectroscopy. Spectrochim Acta B 63:968–974CrossRefGoogle Scholar
  6. 6.
    Sarkar A, Alamelu D, Aggarwal SK (2009) Laser-induced breakdown spectroscopy for determination of uranium in thorium–uranium mixed oxide fuel materials. Talanta 78:800–804CrossRefGoogle Scholar
  7. 7.
    Singh M, Sarkar A, Banerjee J, Bhagat RK (2017) Analysis of simulated high burnup nuclear fuel by laser induced breakdown spectroscopy. Spectrochim Acta B 132:1–7CrossRefGoogle Scholar
  8. 8.
    St-Onge L, Sabsabi M (2000) Towards quantitative depth-profile analysis using laser-induced plasma spectroscopy: investigation of galvannealed coatings on steel. Spectrochim Acta B 55:299–308CrossRefGoogle Scholar
  9. 9.
    Gondal MA, Hussain T (2007) Determination of poisonous metals in wastewater collected from paint manufacturing plant using laser-induced breakdown spectroscopy. Talanta 71:73–80CrossRefGoogle Scholar
  10. 10.
    Bilge G, Sezer B, Eseller KE, Berberoglu H, Koksel H, Boyaci IH (2016) Ash analysis of flour sample by using laser-induced breakdown spectroscopy. Spectrochim Acta B 124:74–78CrossRefGoogle Scholar
  11. 11.
    Moncayo S, Manzoor S, Rosales JD, Anzano J, Caceres JO (2017) Qualitative and quantitative analysis of milk for the detection of adulteration by laser induced breakdown spectroscopy (LIBS). Food Chem 232:322–328CrossRefGoogle Scholar
  12. 12.
    Singh J, Kumar R, Awasthi S, Singh V, Rai AK (2017) Laser induced breakdown spectroscopy: a rapid tool for the identification and quantification of minerals in cucurbit seeds. Food Chem 221:1778–1783CrossRefGoogle Scholar
  13. 13.
    Sallé B, Lacour J-L, Mauchien P, Fichet P, Maurice S, Manhès G (2006) Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated martian atmosphere. Spectrochim Acta B 61:301–313CrossRefGoogle Scholar
  14. 14.
    Sirven J-B, Sallé B, Mauchien P, Lacour J-L, Maurice S, Manhès G (2007) Feasibility study of rock identification at the surface of mars by remote laser-induced breakdown spectroscopy and three chemometric methods. J Anal At Spectrom 22:1471–1480CrossRefGoogle Scholar
  15. 15.
    Choi E-Y, Jeong SM (2015) Electrochemical processing of spent nuclear fuels: an overview of oxide reduction in pyroprocessing technology. Prog Nat Sci 25:572–582CrossRefGoogle Scholar
  16. 16.
    Koyama T, Sakamura Y, Iizuka M, Kato T, Murakami T, Glatz J-P (2012) Development of pyro-processing fuel cycle technology for closing actinide cycle. Proc Chem 7:772–778CrossRefGoogle Scholar
  17. 17.
    Nagarajan K, Reddy BP, Ghosh S, Ravisankar G, Mohandas KS, Mudali UK, Kutty KVG, Viswanathan KVK, Babu CA, Kalyanasundaram P, Rao PRV, Raj B (2011) Development of pyrochemical reprocessing for spent metal fuels. Energy Proc 7:431–436CrossRefGoogle Scholar
  18. 18.
    Cho Y-Z, Park G-H, Yang H-C, Han D-S, Lee H-S, Kim I-T (2009) Minimization of eutectic salt waste from pyroprocessing by oxidative precipitation of lanthanides. J Nucl Sci Technol 46:1004–1011CrossRefGoogle Scholar
  19. 19.
    Eun HC, Kim JH, Cho YZ, Choi JH, Lee TK, Park HS, Park GI (2013) An optimal method for phosphorylation of rare earth chlorides in LiCl–KCl eutectic based waste salt. J Nucl Mater 442:175–178CrossRefGoogle Scholar
  20. 20.
    Eun HC, Choi JH, Kim NY, Lee TK, Han SY, Lee KR, Park HS, Ahn DH (2016) A reactive distillation process for the treatment of LiCl–KCl eutectic waste salt containing rare earth chlorides. J Nucl Mater 480:69–74CrossRefGoogle Scholar
  21. 21.
    Harrison MT, Simms HE, Jackson A, Lewin RG (2008) Salt waste treatment from a LiCl–KCl based pyrochemical spent fuel treatment process. Radiochim Acta 96:295–301CrossRefGoogle Scholar
  22. 22.
    Date AR, Gray AL (1985) Determination of trace elements in geological samples by inductively coupled plasma source mass spectrometry. Spectrochim Acta B 40:115–122CrossRefGoogle Scholar
  23. 23.
    Wysocka I, Vassileva E (2017) Method validation for high resolution sector field inductively coupled plasma mass spectrometry determination of the emerging contaminants in the open ocean: rare earth elements as a case study. Spectrochim Acta B 128:1–10CrossRefGoogle Scholar
  24. 24.
    Fu Q, Yang L, Wang Q (2007) On-line preconcentration with a novel alkyl phosphinic acid extraction resin coupled with inductively coupled plasma mass spectrometry for determination of trace rare earth elements in seawater. Talanta 72:1248–1254CrossRefGoogle Scholar
  25. 25.
    Guo XQ, Tang XT, He M, Chen BB, Nan K, Zhang QY, Hu B (2014) Dual dispersive extraction combined with electrothermal vaporization inductively coupled plasma mass spectrometry for determination of trace REEs in water and sediment samples. RSC Adv 4:19960–19969CrossRefGoogle Scholar
  26. 26.
    Sereshti H, Far AR, Samadi S (2012) Optimized ultrasound-assisted emulsification-microextraction followed by ICP-OES for simultaneous determination of lanthanum and cerium in urine and water samples. Anal Lett 45:1426–1439CrossRefGoogle Scholar
  27. 27.
    D’Angelo JA, Martinez LD, Resnizky S, Perino E, Marchevsky EJ (2001) Determination of eight lanthanides in apatites by ICP-AES, XRF and NAA. J Trace Microprobe Tech 19:79–90CrossRefGoogle Scholar
  28. 28.
    Nakayama K, Nakamura T (2005) X-ray fluorescence analysis of rare earth elements in rocks using low dilution glass beads. Anal Sci 21:815–822CrossRefGoogle Scholar
  29. 29.
    Ravisankar R, Manikandan E, Dheenathayalu M, Rao B, Seshadreesan NP, Nair KGM (2006) Determination and distribution of rare earth elements in beach rock samples using instrumental neutron activation analysis (INAA). Nucl Instrum Method Phys Res B 251:496–500CrossRefGoogle Scholar
  30. 30.
    Ashraf A, Saion E, Gharibshahi E, Kamari HM, Kong YC, Hamzah MS, Elias MdS (2016) Rare earth elements in core marine sediments of coastal East Malaysia by instrumental neutron activation analysis. Appl Radiat Isot 107:17–23CrossRefGoogle Scholar
  31. 31.
    Pedreira WR, Sarkis JES, Rodrigues C, Tomiyoshi IA, da Silva Queiroz CA, Abrao A (2002) Determination of trace amounts of rare earth elements in high pure lanthanum oxide by sector field inductively coupled plasma mass spectrometry (HR ICP–MS) and high-performance liquid chromatography (HPLC) techniques. J Alloy Compd 344:17–20CrossRefGoogle Scholar
  32. 32.
    Unnikrishnan VK, Nayak R, Devangad P, Tamboli MM, Santhosh C, Kumar GA, Sardar DK (2013) Calibration based laser-induced breakdown spectroscopy (LIBS) for quantitative analysis of doped rare earth elements in phosphors. Mater Lett 107:322–324CrossRefGoogle Scholar
  33. 33.
    Abedin KM, Haider AFMY, Rony MA, Khan ZH (2011) Identification of multiple rare earths and associated elements in raw monazite sands by laser-induced breakdown spectroscopy. Opt Laser Technol 43:45–49CrossRefGoogle Scholar
  34. 34.
    Bridge CM, Powell J, Steele KL, Sigman ME (2007) Forensic comparative glass analysis by laser-induced breakdown spectroscopy. Spectrochim Acta B 62:1419–1425CrossRefGoogle Scholar
  35. 35.
    Devangad P, Unnikrishnan VK, Nayak R, Tamboli MM, Shameem KMM, Santhosh C, Kumar GA, Sardar DK (2016) Performance evaluation of laser induced breakdown spectroscopy (LIBS) for quantitative analysis of rare earth elements in phosphate glasses. Opt Mater 52:32–37CrossRefGoogle Scholar
  36. 36.
    Haider AFMY, Rony MA, Lubna RS, Abedin KM (2011) Detection of multiple elements in coal samples from Bangladesh by laser-induced breakdown spectroscopy. Opt Laser Technol 43:1405–1410CrossRefGoogle Scholar
  37. 37.
    Jung EC, Lee DH, Yun J-I, Kim JG, Yeon JW, Song K (2011) Quantitative determination of uranium and europium in glass matrix by laser-induced breakdown spectroscopy. Spectrochim Acta B 66:761–764CrossRefGoogle Scholar
  38. 38.
    Weisberg A, Lakis RE, Simpson MF, Horowitz L, Craparo J (2014) Measuring lanthanide concentrations in molten salt using laser-induced breakdown spectroscopy (LIBS). Appl Spectrosc 68:937–948CrossRefGoogle Scholar
  39. 39.
    Martin M, Martin RC, Allman S, Brice D, Wymore A, Andre N (2015) Quantification of rare earth elements using laser-induced breakdown spectroscopy. Spectrochim Acta B 114:65–73CrossRefGoogle Scholar
  40. 40.
    Alamelu D, Sarkar A, Aggarwal SK (2008) Laser-induced breakdown spectroscopy for simultaneous determination of Sm, Eu and Gd in aqueous solution. Talanta 77:256–261CrossRefGoogle Scholar
  41. 41.
    Rai SS, Rai NK, Rai AK, Chattopadhyaya UC (2016) Rare earth elements analysis in archaeological pottery by laser induced breakdown spectroscopy. Spectrosc Lett 49(2):57–62CrossRefGoogle Scholar
  42. 42.
    Yang X, Hao Z, Shen M, Yi R, Li J, Yu H, Guo L, Li X, Zeng X, Lu Y (2017) Simultaneous determination of La, Ce, Pr and Nd elements in aqueous solution using surface-enhanced laser-induced breakdown spectroscopy. Talanta 163:127–131CrossRefGoogle Scholar
  43. 43.
    Hundry D, Bardez I, Rakhmatullin A, Bessada C, Bart F, Jobic S, Deniard P (2008) Synthesis of rare earth phosphates in molten LiCl–KCl eutectic: application to preliminary treatment of chlorinated waste streams containing fission products. J Nucl Mater 381:284–289CrossRefGoogle Scholar
  44. 44.
    Atomic spectral line database, University of Hannover. http://www.pmp.uni-hannover.de/cgi-bin/ssi/test/kurucz/sekur.html
  45. 45.
    Ismail MA, Imam H, Elhassan A, Youniss WT, Harith MA (2004) LIBS limit of detection and plasma parameters of some elements in two different metallic matrices. J Anal At Spectrom 19:489–494CrossRefGoogle Scholar
  46. 46.
    Mohamed WTY (2008) Improved LIBS limit of detection of Be, Mg, Si, Mn, Fe and Cu in aluminum alloy samples using a portable Echelle spectrometer with ICCD camera. Opt Laser Technol 40:30–38CrossRefGoogle Scholar
  47. 47.
    Ishizuka T (1973) Laser emission spectrography of rare earth elements. Anal Chem 45:538–541CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • S. Maji
    • 1
  • Satendra Kumar
    • 1
  • K. Sundararajan
    • 1
  • K. Sankaran
    • 1
  1. 1.Materials Chemistry Division, Materials Chemistry and Metal Fuel Cycle GroupIndira Gandhi Centre for Atomic ResearchKalpakkamIndia

Personalised recommendations