Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 2, pp 1197–1205 | Cite as

Compartmentalization of Co and Mn in live cells of Escherichia coli: investigation using 60Co and 54Mn as radioindicators

  • Martin Pipíška
  • Zuzana Trajteľová
  • Miroslav Horník


Compartmentalization of Co and Mn in Escherichia coli BL21 (D3) was investigated using 60Co and 54Mn as radioindicators. Living non-growing E. coli cells sequestered accumulated cobalt and manganese not only on cell surface but significant amounts of uptaken metals were associated with periplasmic space and cytoplasm. Both Co and Mn cell compartmentalization was time and concentration dependent process although total binding capacity of cells for Co was significantly lower compared to Mn. This should be considered in sorption studies especially in cases when metal recovery from bacterial cells is required or bacteria should be used in several sorption–desorption cycles.


60Co 54Mn Escherichia coli Uptake Cell compartmentalization 



This work was supported by the Slovak Research and Development Agency under the contract No. APVV-0380-12.


  1. 1.
    Prakash D, Gabani P, Chandel AK, Ronen Z, Singh OV (2013) Bioremediation: a genuine technology to remediate radionuclides from the environment. Microb Biotechnol 6:349–360CrossRefGoogle Scholar
  2. 2.
    Nakajima A, Tsuruta T (2004) Competitive biosorption of thorium and uranium by Micrococcus luteus. J Radioanal Nucl Chem 260:13–18CrossRefGoogle Scholar
  3. 3.
    Tišáková L, Pipíška M, Godány A, Horník M, Vidová B, Augustín J (2013) Bioaccumulation of 137Cs and 60Co by bacteria isolated from spent nuclear fuel pools. J Radioanal Nucl Chem 295:737–748CrossRefGoogle Scholar
  4. 4.
    Vázquez-Ortega A, Fein JB (2017) Thermodynamic modeling of Mn(II) adsorption onto manganese oxidizing bacteria. Chem Geol 464:147–154CrossRefGoogle Scholar
  5. 5.
    Michalak I, Chojnacka K, Witek-Krowiak A (2013) State of the art for the biosorption process—a review. Appl Biochem Biotechnol 170:1389–1416CrossRefGoogle Scholar
  6. 6.
    Huang F, Dang Z, Guo CL, Lu GN, Gu RR, Liu HJ, Zhang H (2013) Biosorption of Cd(II) by live and dead cells of Bacillus cereus RC-1 isolated from cadmium-contaminated soil. Colloids Surf B Biointerfaces 107:11–18CrossRefGoogle Scholar
  7. 7.
    Zhou W, Dongsheng L, Zhang H, Kong W, Zhang Y (2014) Bioremoval and recovery of Cd(II) by Pseudoalteromonas sp. SCSE709-6: comparative study on growing and grown cells. Bioresour Technol 165:145–151CrossRefGoogle Scholar
  8. 8.
    Machalová L, Pipíška M, Trajteľová Z, Horník M (2015) Comparison of Cd2+ biosorption and bioaccumulation by bacteria—a radiometric study. Nova Biotechnol Chim 14:158–175Google Scholar
  9. 9.
    Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Persp Biol 2:1–16Google Scholar
  10. 10.
    Hrynkiewicz K, Zloch M, Kowalkowski T, Baum Ch, Niedojadlo K, Buszewski B (2015) Strain-specific bioaccumulation and intracellular distribution of Cd2+ in bacteria isolated from the rhizosphere, ectomycorrhizae, and fruitbodies of ectomycorrhizal fungi. Environ Sci Pollut Res 4:3055–3067CrossRefGoogle Scholar
  11. 11.
    Chojnacka K (2010) Biosorption and bioaccumulation—the prospects for practical applications. Environ Int 36:299–307CrossRefGoogle Scholar
  12. 12.
    Desaunay A, Martins JMF (2014) Comparison of chemical washing and physical cell-disruption approaches to assess the surface adsorption and internalization of cadmium by Cupriavidus metallidurans CH34. J Hazard Mater 273:231–238CrossRefGoogle Scholar
  13. 13.
    Pabst WM, Miller ChD, Dimkpa Ch, Anderson AJ, Mclean JE (2010) Defining the surface adsorption and internalization of copper and cadmium in a soil bacterium, Pseudomonas putida. Chemosphere 81:904–910CrossRefGoogle Scholar
  14. 14.
    Guiné V, Spadini L, Sarret G, Muris M, Delolme C, Gaudet J-P, Martins JMF (2006) Zinc sorption to three gram-negative bacteria: combined titration, modeling, and EXAFS study. Environ Sci Technol 40:1806–1813CrossRefGoogle Scholar
  15. 15.
    Romaidi Ueki T (2016) Bioaccumulation of vanadium by vanadium-resistant bacteria isolated from the intestine of Ascidia sydneiensis samea. Mar Biotechnol 18:359–371CrossRefGoogle Scholar
  16. 16.
    McLean JE, Pabst MW, Miller CD, Dimkpa CO, Anderson AJ (2013) Effect of complexing ligands on the surface adsorption, internalization, and bioresponse of copper and cadmium in a soil bacterium, Pseudomonas putida. Chemosphere 91:374–382CrossRefGoogle Scholar
  17. 17.
    Zhang Y, Liu W, Xu M, Zheng F, Zhao M (2010) Study of the mechanisms of Cu2+ biosorption by ethanol/caustic-pretreated baker’s yeast biomass. J Hazard Mater 178:1085–1093CrossRefGoogle Scholar
  18. 18.
    Hou Y, Cheng K, Li Z, Ma X, Wei Y, Zhang L, Wang Y (2015) Biosorption of cadmium and manganese using free cells of Klebsiella sp. isolated from waste water. PLoS ONE 10:e0140962CrossRefGoogle Scholar
  19. 19.
    Martin JE, Waters LS, Storz G, Imlay JA (2015) The Escherichia coli small protein MntS and exporter MntP optimize the intracellular concentration of manganese. PLoS Genet 11:e1004977CrossRefGoogle Scholar
  20. 20.
    Ranquet C, Ollagnier-de-Choudens S, Loiseau L, Barras F, Fontecave M (2007) Cobalt stress in Escherichia coli: the effect on the iron-sulfur proteins. J Biol Chem 282:30442–30451CrossRefGoogle Scholar
  21. 21.
    Kothamasi D, Kothamasi S (2004) Cobalt interference in iron-uptake could inhibit growth in Pseudomonas aeruginosa. World J Microbiol Biotechnol 20:755–758CrossRefGoogle Scholar
  22. 22.
    Barras F, Fontecave M (2011) Cobalt stress in Escherichia coli and Salmonella enterica: molecular bases for toxicity and resistance. Metallomics 3:1130–1134CrossRefGoogle Scholar
  23. 23.
    Stenberg F, Chovanec P, Maslen SL, Robinson CV, Ilag LL, von Heijne G, Daley DO (2005) Protein complexes of the Escherichia coli cell envelope. J Biol Chem 280:34409–34419CrossRefGoogle Scholar
  24. 24.
    Tong Y, Wang G, Tian F, Liu X, Zhao J, Zhang H, Chen W (2016) Systematic understanding of the potential manganese-adsorption components of a screened: Lactobacillus plantarum CCFM436. RSC Adv 6:102804–102813CrossRefGoogle Scholar
  25. 25.
    Vullo DL, Ceretti HM, Daniel MA, Ramírez SAM, Zalts A (2008) Cadmium, zinc and copper biosorption mediated by Pseudomonas veronii 2E. Bioresour Technol 99:5574–5581CrossRefGoogle Scholar
  26. 26.
    Yang Y, Hu M, Zhou D, Fan W, Wang X, Huo M (2017) Bioremoval of Cu2+ from CMP wastewater by a novel copper-resistant bacterium Cupriavidus gilardii CR3: characteristics and mechanisms. RSC Adv 7:18793–18802CrossRefGoogle Scholar
  27. 27.
    Kazy SK, Sar P, Asthana RK, Singh SP (1999) Copper uptake and its compartmentalization in Pseudomonas aeruginosa strains: chemical nature of cellular metal. World J Microbiol Biotechnol 15:599–605CrossRefGoogle Scholar
  28. 28.
    Jensen AN, Jensen LT (2015) Manganese transport, trafficking and function in invertebrates. In: Costa LG, Aschner M (eds) Issues in toxicology No. 22. Manganese in health and disease. The Royal Society for Chemistry, LondonGoogle Scholar
  29. 29.
    Rodionov DA, Hebbeln P, Gelfand MS, Eitinger T (2006) Comparative and functional genomic analysis of prokaryotic nickel and cobalt uptake transporters: evidence for a novel group of ATP-binding cassette transporters. J Bacteriol 188:317–327CrossRefGoogle Scholar
  30. 30.
    Eitinger T (2013) Transport of nickel and cobalt in prokaryotes. In: Culotta V, Scott RA (eds) Metals and cells (encyclopedia of inorganic and bioinorganic chemistry series). Wiley, ChichesterGoogle Scholar
  31. 31.
    Hausinger RP, Zamble DB (2007) Microbial physiology of nickel and cobalt. In: Nies DH, Silver S (eds) Molecular microbiology of heavy metals. Springer, BerlinGoogle Scholar
  32. 32.
    Gao R, Wang Y, Zhang Y, Tong J, Dai W (2017) Cobalt(II) bioaccumulation and distribution in Rhodopseudomonas palustris. Biotechnol Biotechnol Equip 31:527–534CrossRefGoogle Scholar
  33. 33.
    Leonardo T, Farhi E, Boisson A-M, Vial J, Cloetens P, Bohic S, Rivasseau C (2014) Determination of elemental distribution in green micro-algae using synchrotron radiation nano X-ray fluorescence (SR-nXRF) and electron microscopy techniques-subcellular localization and quantitative imaging of silver and cobalt uptake by Coccomyxa actinabiotis. Metallomics 6:316–329CrossRefGoogle Scholar
  34. 34.
    Borrok D, Turner BF, Fein JB (2005) A universal surface complexation framework for modeling proton binding onto bacterial surfaces in geologic settings. Am J Sci 305:826–853CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Martin Pipíška
    • 1
    • 2
  • Zuzana Trajteľová
    • 2
  • Miroslav Horník
    • 2
  1. 1.Department of ChemistryTrnava University in TrnavaTrnavaSlovakia
  2. 2.Department of Ecochemistry and RadioecologyUniversity of SS. Cyril and MethodiusTrnavaSlovakia

Personalised recommendations