Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 2, pp 941–948 | Cite as

Natural radioactivity and hazard-level assessment of Portland cements in Turkey

  • Mehmet Altun
  • Naim Sezgin
  • Semih Nemlioglu
  • Bektas Karakelle
  • Nuri Can
  • Ugur Emre Temelli
Article

Abstract

The natural radioactivity levels and some radiological parameters of Turkish Portland cements (PC) originated in various regions were determined in this study. The activity concentration of cement samples for 226Ra, 232Th, and 40K were measured using a gamma-ray spectrometer with high purity germanium radiation detector. The PC samples had activity concentrations of 33.0, 16.7, and 239.5 Bq kg−1 for 226Ra, 232Th, and 40K, respectively. The mean value of radium equivalent value (Raeq) was found to be 75.4 Bq kg−1. The radium equivalent values in the cement samples were lower than the acceptable level of 370 Bq kg−1. The calculated radiological parameters were found to be below the acceptance levels.

Keywords

Natural radioactivity Radiation hazard Gamma spectrometry Cement 

Notes

Acknowledgements

This work was supported by Research Fund of the Istanbul University. Project Number: BYP-53529.

References

  1. 1.
    United National Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), Sources and Risks of Ionizing Radiation. Report to the General Assembly with Annexes, New York, USA 2000Google Scholar
  2. 2.
    Estokova A, Palascakova L (2013) Assessment of natural radioactivity levels of cements and cement composites in the Slovak Republic. Int J Environ Res Public Health 10:7165–7179CrossRefGoogle Scholar
  3. 3.
    Turhan S (2008) Assessment of the natural radioactivity and radiological hazards in Turkish cement and its raw materials. J Environ Radioact 99:404–414CrossRefGoogle Scholar
  4. 4.
    Righi S, Bruzzi L (2006) Natural radioactivity and radon exhalation in building materials used in Italian dwellings. J Environ Radioact 88:158–170CrossRefGoogle Scholar
  5. 5.
    Khan K, Khan HM (2001) Natural gamma-emitting radionuclides in Pakistani Portland cement. Appl Radiat Isot 54:861–865CrossRefGoogle Scholar
  6. 6.
    El-Taher A, Makhluf S, Nossair A, Abdel Halim AS (2010) Assessment of natural radioactivity levels and radiation hazards due to cement industry. Appl Radiat Isot 68:169–174CrossRefGoogle Scholar
  7. 7.
    Damla N, Cevik U, Kobya AI, Celik A, Celik N, van Grieken R (2010) Radiation dose estimation and mass attenuation coefficients of cement samples used in Turkey. J Hazard Mater 176:644–649CrossRefGoogle Scholar
  8. 8.
    Engin Y, Tarhan M (2012) TS EN (Turkish Standart European Norm) 197-1:2012 Standardı’ndaki Değişiklikler (in Turkish). Hazır Beton 67–71Google Scholar
  9. 9.
    El-Taher A (2012) Assessment of natural radioactivity levels and radiation hazards for building materials used in Qassim Area, Saudi Arabia. Rom J Phys 57:726–735Google Scholar
  10. 10.
    Currie LA (1968) Limits for qualitative detection and quantitative determination. Anal Chem 40:586–593CrossRefGoogle Scholar
  11. 11.
    Ravisankar R, Vanasundari K, Suganya M, Raghu Y, Rajalakshmi A, Chandrasekaran A, Sivakumar S, Chandramohan J, Vijayagopal P, Venkatraman B (2014) Multivariate statistical analysis of radiological data of building materials used in Tiruvannamalai, Tamilnadu, India. Appl Radiat Isot 85:114–127CrossRefGoogle Scholar
  12. 12.
    NEA-OECD (1979) Exposure to radiation from natural radioactivity in building materials. Report by NEA group of Experts of the Nuclear Energy Agency OECD, ParisGoogle Scholar
  13. 13.
    EC (European Commission) (1999) Radiation Protection, 112- radiological protection principles concerning the natural radioactivity of building materials. Directorate-General Environment. Nuclear Safety and Civil ProtectionGoogle Scholar
  14. 14.
    Bruzzi Righi S (2006) Natural radioactivity and radon exhalation in building materials used in Italian dwellings. J Environ Radioact 88:158–170CrossRefGoogle Scholar
  15. 15.
    Beretka J, Mathew PJ (1985) Natural radioactivity of Australian building materials, industrial wastes and by-product. Health Phys 48:87–95CrossRefGoogle Scholar
  16. 16.
    Krieger R (1981) Radioactivity of construction materials. Betonw. Fert Technol 47:468–473Google Scholar
  17. 17.
    Amrani D, Tahtat M (2001) Natural radioactivity in Algerian building materials. Appl Radiat Isot 54:687–689CrossRefGoogle Scholar
  18. 18.
    Sorantin P, Steger F (1984) Natural radioactivity of building materials in Austria. Radiat Prot Dosim 7:59–61CrossRefGoogle Scholar
  19. 19.
    Trevisi R, Risica S, D’Alessandro M, Paradiso D, Nuccetelli C (2012) Natural radioactivity in building materials in the European Union: a database and an estimate of radiological significance. J Environ Radioact 105:11–20CrossRefGoogle Scholar
  20. 20.
    Roy S, Alam MS, Begum M, Alam B (2005) Radioactivity in building materials used in and around Dhaka city. Radiat Prot Dosim 114:527–532CrossRefGoogle Scholar
  21. 21.
    Malanca A, Pessina V, Dallara G (1993) Radionuclide content of building materials and gamma-ray dose rates in dwellings of Rio-Grande Do-Norte Brazil. Radiat Prot Dosim 48:199–203Google Scholar
  22. 22.
    Ngachin M, Garavaglia M, Giovani C, Kwato Njock MG, Nourreddine A (2007) Assessment of natural radioactivity and associated radiation hazards in some Cameroonian building materials. Radiat Meas 42:61–67CrossRefGoogle Scholar
  23. 23.
    Lu X, Yang G, Ren C (2012) Natural radioactivity and radiological hazards of building materials in Xianyang, China. Radiat Phys Chem 81:780–784CrossRefGoogle Scholar
  24. 24.
    Xinwei L (2005) Radioactive analysis of cement and its products collected from Shaanxi, China. Health Phys 88:84–86CrossRefGoogle Scholar
  25. 25.
    Lu X, Chao S, Yang F (2014) Determination of natural radioactivity and associated radiation hazard in building materials used in Weinan, China. Radiat Phys Chem 99:62–67CrossRefGoogle Scholar
  26. 26.
    El-Bahi SM (2004) Assessment of radioactivity and radon exhalation rate in Egyptian cement. Health Phys 86:517–522CrossRefGoogle Scholar
  27. 27.
    El-Taher A (2010) INAA and DNAA for uranium determination in geological samples from Egypt. App Radiat Isot 68:1189–1192CrossRefGoogle Scholar
  28. 28.
    El Afifi EM, Hilal MA, Khalifa SM, Aly HF (2006) Evaluation of U, Th, K and emanated radon in some NORM and TENORM samples. Radiat Meas 41:627–633CrossRefGoogle Scholar
  29. 29.
    Mustonen R (1984) Natural radioactivity and radon exhalation rate from Finnish building materials. Health Phys 46:1195–1203CrossRefGoogle Scholar
  30. 30.
    Stoulos S, Manolopoulou M, Papastefanou C (2003) Assessment of natural radiation exposure and radon exhalation from building materials in Greece. J Environ Radiact 69:225–240CrossRefGoogle Scholar
  31. 31.
    Papastefanou C, Stoulos S, Manolopoulou M (2005) The radioactivity of building materials. J Radioanal Nucl Chem 266(3):367–372CrossRefGoogle Scholar
  32. 32.
    Kumar V, Ramachandran TV, Prasad R (1999) Natural radioactivity of Indian building materials and by-products. Appl Radiat Isot 51:93–96CrossRefGoogle Scholar
  33. 33.
    Fathivand AA, Amidi J (2007) Assessment of natural radioactivity and the associated hazards in Iranian cement. Radiat Prot Dosim 124:145–147CrossRefGoogle Scholar
  34. 34.
    Lee EM, Menezes G, Fich EC (2004) Natural radioactivity in building materials in the Republic of Ireland. Health Phys 86:378–383CrossRefGoogle Scholar
  35. 35.
    Sciocchetti G, Scacco F, Baldassini PG (1984) Indoor measurement of airborne natural radioactivity in Italy. Radiat Prot Dosim 7:347–351CrossRefGoogle Scholar
  36. 36.
    Rizzo S, Brai M, Basile S, Bellia S, Hauser S (2001) Gamma activity and geochemical features of building materials: estimation of gamma dose rate and indoor radon levels in Sicily. Appl Radiat Isot 55:259–265CrossRefGoogle Scholar
  37. 37.
    Suzuki A, Iida T, Moriizumi J, Sakuma Y (2000) The effects of different types of concrete on population doses. Radiat Prot Dosim 90:437–443CrossRefGoogle Scholar
  38. 38.
    Ahmad MN, Hussein AJA (1997) Natural radioactivity in Jordanian building materials and the associated radiation hazards. J Environ Radioact 39:9–22Google Scholar
  39. 39.
    Chong CS, Ahmed GU (1982) Gamma activity of some building materials in west Malaysia. Health Phys 43:272–273Google Scholar
  40. 40.
    Majid AAB, Ismail AF, Yasir MS, Yahaya R, Bahari I (2013) Radiological dose assessment of naturally occurring radioactive materials in concrete building materials. J Radioanal Nucl Chem 297:277–284CrossRefGoogle Scholar
  41. 41.
    Ackers JG, Den Boer JF, De Jong P, Wolschrijn RA (1985) Radioactivity and exhalation rates of building materials in the Netherlands. Sci Total Environ 45:151–156CrossRefGoogle Scholar
  42. 42.
    Agbalagba EO, Osakwe ROA, Olarinoye IO (2014) Comparative assessment of natural radionuclide content of cement brands used within Nigeria and some countries in the world. J Geochem Explorat 142:21–28CrossRefGoogle Scholar
  43. 43.
    Stranden E (1976) Some aspects on radioactivity of building materials. Phys Norv 8:167–173Google Scholar
  44. 44.
    Rahman SU, Rafique M, Matiullah Jabbar A (2013) Radiological hazards due to naturally occurring radionuclides in the selected building materials used for the construction of dwellings in four districts of the Punjab Province, Pakistan. Radiat Prot Dosim 153:352–360CrossRefGoogle Scholar
  45. 45.
    Khan K, Khan HM (2001) Natural gamma-emitting radionuclides in Pakistani Portland cement. Appl Radiat Isot 54:861–865CrossRefGoogle Scholar
  46. 46.
    Al Mugren KS, El-Taher A (2016) Risk assessment of some radioactive and elemental content from cement and phosphate fertilizer consumer in Saudi Arabia. J Environ Sci Technol 9(4):323–328CrossRefGoogle Scholar
  47. 47.
    Estokova A, Palacakova L (2013) Study of natural radioactivity of slovak cements. Chem Eng Trans 32:1675–1680Google Scholar
  48. 48.
    Hizem N, Fredj AB, Ghedira L (2005) Determination of natural radioactivity in building materials used in Tunisian dwellings by gamma ray spectrometry. Radiat Prot Dosim 114:533–537CrossRefGoogle Scholar
  49. 49.
    Alam MN, Chowdhury MI, Kamal M, Ghose S, Islam MN, Mustafa MN, Miah MMH, Ansary MM (1999) The 226Ra,232Th and 40 K activates in beach sand minerals and beach soils of Cox’s bazaar, Bangladesh. J Environ Radioact 46:243–250CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Mehmet Altun
    • 1
  • Naim Sezgin
    • 2
  • Semih Nemlioglu
    • 2
  • Bektas Karakelle
    • 3
  • Nuri Can
    • 2
  • Ugur Emre Temelli
    • 4
  1. 1.Department of Chemistry, Faculty of EngineeringIstanbul UniversityIstanbulTurkey
  2. 2.Department of Environmental Engineering, Faculty of EngineeringIstanbul UniversityIstanbulTurkey
  3. 3.TAEK, Cekmece Nuclear Research, and Training CenterIstanbulTurkey
  4. 4.Property Protection and Security Department, Civil Defense and Fire Fighting Program, Vocational School of Technical SciencesIstanbul UniversityIstanbulTurkey

Personalised recommendations