Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 2, pp 1141–1147 | Cite as

Effect of surface and textural characteristics on uranium adsorption by nanoporous titania

  • Polyxeni Paschalidou
  • Ioanna Liatsou
  • Ioannis Pashalidis
  • Charis R. Theocharis
Article

Abstract

TiO2 solids of different grain size have been prepared by micelle-mediated hydrolysis and a solvothermal method, and characterized by SEM microscopy and N2 adsorption. The effect of the BET surface area/pore volume and the grain size of the solids on the U(VI) adsorption has been investigated by batch-type experiments and evaluated by correlating the textural parameters with the corresponding K d values, which have been found to vary between 450 and 8600 ml g−1. The adsorption of U(VI) by TiO2 is well described by the Freundlich isotherm model and both, the BET surface/pore volume and grain size determine the adsorption efficacy.

Keywords

Uranium Titania Adsorption isotherms Surface and grain size effects Kd values 

Supplementary material

10967_2017_5475_MOESM1_ESM.docx (226 kb)
Supplementary material 1 (DOCX 225 kb)

References

  1. 1.
    Geckeis H, Rabung T (2008) Actinide geochemistry: from the molecular level to the real system. J Contam Hydrol 102:187–195CrossRefGoogle Scholar
  2. 2.
    Geckeis H, Lützenkirchen J, Polly R, Rabung T, Schmidt M (2013) Mineral-water interface reactions of actinides. Chem Rev 113:1016–1062CrossRefGoogle Scholar
  3. 3.
    Tan X, Fang M, Wang X (2010) Sorption speciation of lanthanides/actinides on minerals by TRLFS, EXAFS and DFT studies: a review. Molecules 15:8431–8468CrossRefGoogle Scholar
  4. 4.
    Comarmond MJ, Payne TE, Harrison JJ, Thiruvoth S, Wong HK, Aughterson RD, Lumpkin GR, Müller K, Foerstendorf H (2011) Uranium sorption on various forms of titanium dioxide - Influence of surface area, surface charge, and impurities. Environ Sci Technol 45:5536–5542CrossRefGoogle Scholar
  5. 5.
    Bourikas K, Kordulis C, Lycourghiotis A (2014) Titanium dioxide (anatase and rutile): surface chemistry, liquid-solid interface chemistry, and scientific synthesis of supported catalysts. Chem Rev 114:9754–9823CrossRefGoogle Scholar
  6. 6.
    Humelnicu D, Popovici E, Dvininov E, Mita C (2009) Study on the retention of uranyl ions on modified clays with titanium oxide. J Radioanal Nucl Chem 279:131–136CrossRefGoogle Scholar
  7. 7.
    Tykva R, Din Khaled Salahel, Pavel CC, Cecal A, Popa K (2009) Contribution to the external surface of a titanium-rich sand (Abou-Khashaba, Egypt) in the uranium uptake processes. J Radioanal Nucl Chem 279:811–816CrossRefGoogle Scholar
  8. 8.
    Kaneko S, Okuda S, Nakamura M (1980) Adsorption of Uranium ion in seawater on coprecipitated silica-titania gel. Chem Lett 9:1621–1624CrossRefGoogle Scholar
  9. 9.
    Bonato M, Ragnarsdottir KV, Allen GC (2012) Removal of uranium(VI), lead(II) at the surface of TiO2 nanotubes studied by X-ray photoelectron spectroscopy. Water Air Soil Pollut 223:3845–3857CrossRefGoogle Scholar
  10. 10.
    Veliscek-Carolan J, Jolliffe KA, Hanley TL (2013) Selective sorption of actinides by titania nanoparticles covalently functionalized with simple organic ligands. ACS Appl Mater Interfaces 5:11984–11994CrossRefGoogle Scholar
  11. 11.
    Jaffrezic-Renault N, Andrade-Martins H (1980) Study of the retention mechanism of uranium on titanium oxide. J Radioanal Chem 55:307–316CrossRefGoogle Scholar
  12. 12.
    Konstantinou M, Pashalidis I (2008) Competitive sorption of Cu(II), Eu(III) and U(VI) ions on TiO2 in aqueous solutions—a potentiometric study. Colloids Surf A 324:217–221CrossRefGoogle Scholar
  13. 13.
    Kuncham K, Nair S, Durani S, Bose R (2017) Efficient removal of uranium(VI) from aqueous medium using ceria nanocrystals: an adsorption behavioural study. J Radioanal Nucl Chem. doi: 10.1007/s10967-017-5279-x Google Scholar
  14. 14.
    Špendlíková I, Němec M, Steier P, Keçeli G (2017) Sorption of uranium on freshly prepared hydrous titanium oxideand its utilization in determination of 236U using accelerator massspectrometry. J Radioanal Nucl Chem 311:447–453CrossRefGoogle Scholar
  15. 15.
    Li Z-J, Huang Z-W, Guo W-L, Wang L, Zheng L-R, Chai Z-F, Shi W-Q (2017) Enhanced photocatalytic removal of uranium(VI) from aqueous solution by magnetic TiO2/Fe3O4 and its graphene composite. Environ Sci Technol 51:5666–5674CrossRefGoogle Scholar
  16. 16.
    Den Auwer C, Drot R, Simoni E, Conradson SD, Gailhanou M, Mustre de Leon J (2003) Grazing incidence XAFS spectroscopy of uranyl sorbed onto TiO2 rutile surfaces. New J Chem 27:648–655CrossRefGoogle Scholar
  17. 17.
    Kluson P, Kacer P, Cajthaml T, Kalaji M (2003) Titania thin films and supported nanostructured membranes prepared by the surfactant assisted sol-gel method. Chem Biochem Eng 17:183–190Google Scholar
  18. 18.
    Malekshahi Byranvand M, Nemati Kharat A, Fatholahi L, Malekshahi Beiranvand Z (2013) A review on synthesis of nano-TiO2 via different methods. JNS 3:1–9CrossRefGoogle Scholar
  19. 19.
    Theocharis CR (1993) In: Sequeira CAC, Hudson MJ (eds) Multifunctional mesoporous inorganic solids. Kluwer Academic Publishers, PortugalGoogle Scholar
  20. 20.
    Khan MH, Warwick P, Evans N (2006) Spectrophotometric determination of uranium with arsenazo-III in perchloric acid. Chemosphere 63:1165–1169CrossRefGoogle Scholar
  21. 21.
    Prodromou M, Pashalidis I (2013) Uranium adsorption by non-treated and chemically modified cactus fibres in aqueous solutions. J Radioanal Nucl Chem 298:1587–1595CrossRefGoogle Scholar
  22. 22.
    Hadjittofi L, Pashalidis I (2015) Uranium sorption from aqueous solutions by activated biochar fibres investigated by FTIR spectroscopy and batch experiments. J Radioanal Nucl Chem 304:897–904CrossRefGoogle Scholar
  23. 23.
    Marszewski M, Jaroniec M (2013) Toward tunable adsorption properties, structure, and crystallinity of titania obtained by block copolymer and scaffold-assisted templating. Langmuir 29:12549–12559CrossRefGoogle Scholar
  24. 24.
    Reed BE, Matsumoto MR (1993) Modeling cadmium adsorption by activated carbon using the Langmuir and Freundlich isotherm expressions. Sep Sci and Technol 28:13–14CrossRefGoogle Scholar
  25. 25.
    Konstantinou M, Pashalidis I (2004) Speciation and spectrophotometric determination of uranium in seawater. Mediterr Mar Sci 5:5–17CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Polyxeni Paschalidou
    • 1
  • Ioanna Liatsou
    • 1
  • Ioannis Pashalidis
    • 1
  • Charis R. Theocharis
    • 1
  1. 1.Department of ChemistryUniversity of CyprusNicosiaCyprus

Personalised recommendations