Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 2, pp 975–983 | Cite as

Modeling of simultaneous extraction of uranyl nitrate and nitric acid by 36 vol.% tri-iso-amyl phosphate in n-dodecane

  • S. Balasubramonian
  • Pranay Kumar Sinha
  • D. Sivakumar
  • Alok Kumar Mishra
  • M. Sampath
  • N. K. Pandey
  • Shekhar Kumar
Article
  • 84 Downloads

Abstract

The simultaneous extraction of uranyl nitrate and nitric acid by 36 vol.% tri-iso-amyl phosphate (TiAP) in n-dodecane was experimentally studied and modeled. The batch extraction experiments were carried out at low concentration region of aqueous uranyl nitrate by 36 vol.% TiAP in n-dodecane at 25 °C. The non idealities in aqueous phase were described by eNRTL model. The predicted organic phase concentration of nitric acid and uranyl nitrate obtained by considering the HNO3·TiAP and UO2(NO3)2·2TiAP species in the organic phase is in good agreement with the experimental data.

Keywords

Solvent extraction Uranium Modeling Purex process Thermodynamic model Distribution equilibria 

References

  1. 1.
    Hasan SH, Shukla JP (2003) Tri-iso-amyl phosphate (TAP): an alternative extractant to tri-butyl phosphate (TBP) for reactor fuel reprocessing. J Radioanal Nucl Chem 258:563–573CrossRefGoogle Scholar
  2. 2.
    Suresh A, Srinivasan TG, Vasudeva Rao PR (2009) The effect of the structure of trialkyl phosphates on their physicochemical properties and extraction behavior. Solv Extr Ion Exch 27:258–294CrossRefGoogle Scholar
  3. 3.
    Shukla JP, Gautam MM, Kedari CS, Hasan SH, Rupainwar DC (1997) Extraction of uranium(VI), plutonium(IV) and some fission products by tri-iso-amyl phosphate. J Radioanal Nucl Chem 219:61–67CrossRefGoogle Scholar
  4. 4.
    Sahoo TK, Srinivasan TG (2009) Effect of temperature on the extraction of uranium by TiAP/n-dodecane. Desalin Water Treat 12:40–44CrossRefGoogle Scholar
  5. 5.
    Suresh A, Brahmmananda Rao CVS, Srinivasulu B, Sreenivasan NL, Subramaniam S, Sabharwal KN, Sivaraman N, Srinivasan TG, Natarajan R, Vasudeva Rao PR (2013) Development of alternate extractants for separation of actinides. Energy Proc 39:120–126CrossRefGoogle Scholar
  6. 6.
    Benadict Rakesh K, Suresh A, Vasudeva Rao PR (2014) Extraction and stripping behaviour of tri-iso-amyl phosphate and tri-n-butyl phosphate in n-dodecane with U(VI) in nitric acid media. Radiochim Acta 102:619–628CrossRefGoogle Scholar
  7. 7.
    Sreenivasulu B, Suresh A, Subramaniam S, Sabharwal KN, Sivaraman N, Nagarajan K, Srinivasan TG, Rao PRV (2015) Separation of U(VI) and Pu(IV) from Am(III) and trivalent lanthanides with tri-iso-amyl phosphate (TiAP) as the extractant by using an ejector mixer-settler. Solv Extr Ion Exch 33:120–133CrossRefGoogle Scholar
  8. 8.
    Suresh A, Sreenivasulu B, Jayalakshmi S, Subramaniam S, Sabharwal KN, Sivaraman N, Nagarajan K, Srinivasan TG, Vasudeva Rao PR (2015) Mixer-settler runs for the evaluation of tri-iso-amyl phosphate (TiAP) as an alternate extractant to tri-n-butyl phosphate (TBP) for reprocessing applications. Radiochim Acta 103:101–108CrossRefGoogle Scholar
  9. 9.
    Das D, Juvekar VA, Roy SB, Bhattacharya R (2015) Co-extraction of U(VI) and HNO3 using TBP and its higher homologues TiAP and TEHP: comparison of equilibria, kinetics, and rate of extraction. Sep Sci Technol 50:411–420CrossRefGoogle Scholar
  10. 10.
    Sreenivasulu B, Suresh A, Sivaraman N, Vasudeva Rao PR (2016) Co-extraction and co-stripping of U(VI) and Pu(IV) using tri-iso-amyl phosphate and tri-n-butyl phosphate in n-dodecane from nitric acid media under high loading conditions. Radiochim Acta 104:227–237CrossRefGoogle Scholar
  11. 11.
    Rozen AM, Andrutskii LG, Shapovalov MP (1982) A new mathematical model for the extraction of nitric acid by TBP in diluents. Russ J Inorg Chem 27:1162Google Scholar
  12. 12.
    Sergievskii VV, Fradkin IA, Boyarinov AI (1982) Extraction of metal nitrates and nitric acid. XI: representation of the extraction of nitric acid from binary and ternary solutions by tri-n-butyl phosphate. Sov Radiochem 24:182Google Scholar
  13. 13.
    Schaekers JM (1986) Estimation of equilibrium constants for the extraction of nitric acid by TBP/kerosene mixtures. In: Proceedings of ISEC’86, DECHEMA, FRG, vol I, pp 185–190Google Scholar
  14. 14.
    Chaiko DJ, Vandegrift GF (1988) A thermodynamic model of nitric acid extraction by tri-n-butyl phosphate. Nucl Technol 82:52–59CrossRefGoogle Scholar
  15. 15.
    Blaylock CR, Tedder DW (1989) Competitive equilibria in the system: water, nitric acid, tri-n-butyl phosphate, and Amsco 125-82. Solv Extr Ion Exch 7:249–271CrossRefGoogle Scholar
  16. 16.
    Li Z, Chen J, Bao T, Shang Y, Li Y (1990) Prediction of phase equilibria in tributyl phosphate extraction system using the unifac group contribution method. Thermochim Acta 169:287–300CrossRefGoogle Scholar
  17. 17.
    Mokili B, Poitrenaud C (1995) Modelling of nitric acid and water extraction from aqueous solutions containing a salting out agent by tri-n-butyl phosphate. Solv Extr Ion Exch 13:731–754CrossRefGoogle Scholar
  18. 18.
    Naganawa H, Tachimori S (1997) Complex formation between tributyl phosphate and nitric acid and the hydration of the complexes in dodecane. Bull Chem Soc Jpn 70:809–819CrossRefGoogle Scholar
  19. 19.
    Čomor JJ, Kopečni MM, Petković DM (1997) A chemical model of the solvent extraction system: nitric acid-uranyl nitrate-water-tri-n-butyl phosphate (TBP)-diluent. Solv Extr Ion Exch 15:33–48CrossRefGoogle Scholar
  20. 20.
    Hlushak SP, Simonin JP, Caniffi B, Moisy P, Sorel C, Bernard O (2011) Description of partition equilibria for uranyl nitrate, nitric acid and water extracted by tributyl phosphate in dodecane. Hydrometallurgy 109:97–105CrossRefGoogle Scholar
  21. 21.
    Balasubramonian S, Srivastav RK, Kumar S, Sivakumar D, Sinha PK, Sampath M, Kamachi Mudali U (2013) Speciation of 30% tri-n-butyl phosphate solvent during extraction of nitric acid. J Radioanal Nucl Chem 295:1703–1707CrossRefGoogle Scholar
  22. 22.
    Colon CFJ, Moffat HK, Rao RR (2013) Modeling of liquid-liquid extraction (LLE) equilibria using gibbs energy minimization (GEM) for the system TBP–HNO3–UO2–H2O–diluent. Solv Extr Ion Exch 31:634–651CrossRefGoogle Scholar
  23. 23.
    Puzikov EA, Zilberman BY, Fedorov YS, Blazheva IV, Kudinov AS, Goletskiy ND, Ryabkov DV (2014) A new approach to simulation of extraction equilibria in the PUREX process. Solv Extr Ion Exch 33:362–384CrossRefGoogle Scholar
  24. 24.
    Davies W, Gray W (1964) A rapid and specific titrimetric method for the precise determination of uranium using iron(II) sulphate as reductant. Talanta 11:1203–1211CrossRefGoogle Scholar
  25. 25.
    Florence T, Farrar Y (1963) Spectrophotometric determination of uranium with 4-(2-pyridyIazo)resorcinoI. Anal Chem 35:1613–1616CrossRefGoogle Scholar
  26. 26.
    Čomor JJ, Tolić AŠ, Kopečni MM, Petković DM (1999) Modeling of the simultaneous extraction of nitric acid and uranyl nitrate with tri-n-butyl phosphate. application to extraction operation. Sep Sci Technol 34:115–122CrossRefGoogle Scholar
  27. 27.
    Chen CC, Evans LB (1986) A local composition model for the excess gibbs energy of aqueous electrolyte systems. AIChE J 32:444–454CrossRefGoogle Scholar
  28. 28.
    Balasubramonian S, Sivakumar D, Kumar S, Kamachi Mudali U (2013) Modeling of speciation in aqueous solution of nitric acid using eNRTL model. In: Proceedings of 66th Annual IIChE Meeting (CHEMCON-2013), Mumbai (CD Proceedings)Google Scholar
  29. 29.
    Pitzer K (1980) Electrolytes. From dilute solutions to fused salts. J Am Chem Soc 102:2902–2906CrossRefGoogle Scholar
  30. 30.
    Prausnitz JM, Lichtenthaler RN, Gomes de Azevedo E (1999) Molecular thermodynamics of fluid-phase equilibria, 3rd edn. Prentice Hall, New JerseyGoogle Scholar
  31. 31.
    Kumar S, Koganti SB (1997) Prediction of densities of mixed aqueous solutions of electrolytes—UO2(NO3)2, Pu(NO3)4 and nitric acid. J Nucl Sci Technol 34:410–412CrossRefGoogle Scholar
  32. 32.
    Davis W, De Bruin HJ (1964) New activity coefficients of 0–100 per cent aqueous nitric acid. J Inorg Nucl Chem 26:1069–1083CrossRefGoogle Scholar
  33. 33.
    Hamer WJ, Wu Y (1972) Osmotic coefficients and mean activity coefficients of uni-univalent electrolytes in water at 25 °C. J Phys Chem Ref Data 1:1047–1100CrossRefGoogle Scholar
  34. 34.
    Charrin N, Moisy PH, Garcia-Argote P, Blanc P (1999) Thermodynamic study of the ternary system Th(NO3)4/HNO3/H2O. Radiochim Acta 86:143–149CrossRefGoogle Scholar
  35. 35.
    Davis W, Lawson PS, DeBruin HJ, Mrochek J (1965) Activities of the three components in the system water–nitric acid–uranyl nitrate hexahydrate at 25 °C. J Phys Chem 69:1904–1914CrossRefGoogle Scholar
  36. 36.
    Goldberg RN (1979) Evaluated activity and osmotic coefficients for aqueous solutions: bi-univalent compounds of lead, copper, manganese, and uranium. J Phys Chem Ref Data 8:1005–1050CrossRefGoogle Scholar
  37. 37.
    Srivastav R, Balasubramonian S, Kumar S, Sivakumar D, Sampath M, Kamachi Mudali U (2015) Organic phase speciation of 36% tri-iso amyl phosphate/n-dodecane solvent during nitric acid extraction. J Nucl Eng Technol 5:28–34Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Reprocessing R&D Division, Reprocessing GroupIGCARKalpakkamIndia
  2. 2.Reprocessing Operation Division, Reprocessing GroupIGCARKalpakkamIndia

Personalised recommendations