Skip to main content
Log in

Separation of no-carrier-added 97Ru from 11B-induced Y target by encapsulation of 97Ru into calcium alginate hydrogel beads

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

97Ru radioisotope, a promising candidate for radiopharmaceutical applications was produced by natY(11B,3n) 97Ru reaction with 40 MeV projectile energy. Calcium alginate (CA) hydrogel beads, an environmentally benign matrix, were used for separation of no-carrier-added (NCA) 97Ru from the bulk yttrium target through adsorption–desorption experiments with a high separation factor (S Ru/Y = 2.6 × 104). It was also possible to encapsulate high purity 97Ru in CA hydrogel beads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu LS, Kost J, Yan F, Spiro RC (2012) Hydrogels from biopolymer hybrid for biomedical, food, and functional food applications. Polymers 4:997–1011

    Article  Google Scholar 

  2. Caló E, Vitaliy VK (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267

    Article  Google Scholar 

  3. Yagnesh LP, Sher P, Atmaram PP (2006) The effect of drug concentration and curing time on processing and properties of calcium alginate beads containing metronidazole by response surface methodology. AAPS Pharm Sci Tech 7:E24–E30

    Article  Google Scholar 

  4. Nayak D, Lahiri S (2006) Biosorption of toxic, heavy, no-carrier added radionuclides by calcium alginate beads. J Radioanal Nucl Chem 267:59–65

    Article  CAS  Google Scholar 

  5. Mandal A, Lahiri S (2011) Separation of 134Cs and 133Ba radionuclides by calcium alginate beads. J Radioanal Nucl Chem 290:115–118

    Article  CAS  Google Scholar 

  6. Banerjee A, Nayak D, Lahiri S (2007) Speciation-dependent studies on removal of arsenic by iron-doped calcium alginate beads. Appl Radiat Isot 65:769–775

    Article  CAS  Google Scholar 

  7. Nayak D, Banerjee A, Lahiri S (2007) Separation of no-carrier-added 66,67Ga produced in heavy ion-induced cobalt target using alginate biopolymers. Appl Radiat Isotopes 65:891–896

    Article  CAS  Google Scholar 

  8. Sarkar K, Lahiri S, Sen K (2016) Separation of no-carrier-added 203Pb, a surrogate radioisotope, from proton irradiated natTl2CO3 target using calcium alginate hydrogel beads. Radiochim Acta 104:891–896

    Article  CAS  Google Scholar 

  9. Sarkar K, Sen K, Lahiri S (2017) Separation of long-lived 152Eu radioisotopes from a binary mixture of 152Eu and 134Cs by calcium alginate: a green technique. J Radioanal Nucl Chem 311:2001–2006

    Article  CAS  Google Scholar 

  10. Sarkar K, Lahiri S, Sen K (2017) Incorporation of no-carrier added 200,203Pb and 200,201,202Tl in calcium alginate and hesperidin incorporated calcium alginate beads. Appl Radiat Isotopes 121:16–21

    Article  CAS  Google Scholar 

  11. Maiti M, Datta A, Lahiri S (2015) Aqueous biphasic separation of 97Ru and 95,96Tc from yttrium. RSC Adv 5:80919–80924

    Article  CAS  Google Scholar 

  12. http://www.nndc.bnl.gov/chart [Accessed on 01 Aug 2017]

  13. Schachner EA, Gil MC, Atkins HL, Som P, Srivastava SC, Badia J, Sacker DF, Fairchild RG, Richards P (1981) Ruthenium-97 hepatobiliary agents for delayed studies of the biliary tract I: 97Ru PIPIDA. J Nucl Med 22:352–357

    CAS  Google Scholar 

  14. Richards P, Srivastava S C, George E (1984) Complex of transferrin with ruthenium for medical applications. US patent, 4,448,762, May 15

  15. Som P, Oster ZH, Matsui K, Guglielmi G, Persson BRR, Pellettieri ML, Srivastava SC, Richards P, Atkins HL, Brill AB (1983) 97Ru-transferrin uptake in tumor and abscess. Eur J Nucl Med 8:491–494

    Article  CAS  Google Scholar 

  16. Oster ZH, Som P, Gil MC, Fairchild RG, Goldman AG, Schachner ER, Sacker DF, Atkins HL, Meinken GE, Srivastava SC, Richards P, Brill AB (1981) Ruthenium-97 DTPA: a new radiopharmaceutical for cisternography. J Nucl Med 22:269–273

    CAS  Google Scholar 

  17. Uddin MS, Hagiwara M, Baba M, Tarkanyi F, Ditroi F (2005) Experimental studies on excitation functions of the proton-induced activation reactions on silver. Appl Radiat Isot 62:533–540

    Article  CAS  Google Scholar 

  18. Lagunas-Solar MC, Avila MJ, Nvarro NJ, Johnson PC (1983) Cyclotron production of no-carrier-added 97Ru by proton bombardment of 103Rh targets. Int J Appl Radiat Isot 34:915–917

    Article  CAS  Google Scholar 

  19. Zaitseva NG, Rurarz E, Vobecky M, Hwan KH, Nowak K, Tethal T, Khalkin VA, Popinenkova LM (1992) Excitation function and yield for 97Ru production in 99Tc(p, 3n)97Ru reaction in 20–100 MeV proton energy range. Radiochim Acta 56:59–61

    Article  CAS  Google Scholar 

  20. Comar D, Crouzel C (1976) Ruthenium-97 preparation with a compact cyclotron. Radiochem Radioanal Lett 27:307–312

    CAS  Google Scholar 

  21. Comparetto G, Qaim SM (1980) A comparative study of production of short-lived neutron deficient isotopes 94,95,97Ru in α- and 3He-particle induced nuclear reactions on natural molybdenum. Radiochim Acta 27:177–180

    Article  CAS  Google Scholar 

  22. Lahiri S, Mukhopadhyay B, Das NR (1997) LLX separation of carrier-free 94,95,97,103Ru, 93,94,95,96,99mTc and 95,96Nb produced in alpha-particle activated molybdenum by TOA. J Radioanal Nucl Chem 221:167

    Article  CAS  Google Scholar 

  23. Lahiri S, Mukhopadhyay B (1997) Liquid–liquid extraction of carrier-free radioisotopes produced in α-particle activated molybdenum target by HDEHP and TBP. Appl Radiat Isot 48:925

    Article  CAS  Google Scholar 

  24. Kumar D, Maiti M, Lahiri S (2016) Experimental probe for the production of 97Ru from the 7Li + 93Nb reaction: a study of precompound emissions. Phys Rev C 94:044603

    Article  Google Scholar 

  25. Maiti M, Lahiri S (2011) Production and separation of 97Ru from 7Li activated natural niobium. RadiochimActa 99:359–364

    CAS  Google Scholar 

  26. Maiti M (2013) Production and separation of 97Ru and coproduced 95Tc from 12C-induced reaction on natural yttrium target. Radiochim Acta 101:437–444

    Article  CAS  Google Scholar 

  27. Kumar D, Maiti M, Lahiri S (2017) Production of no-carrier-added 97Ru from 11B-activated natural yttrium target and its subsequent separation using liquid–liquid extraction. Sep Sci Technol. doi:10.1080/01496395.2017.1279179

    Google Scholar 

  28. Datta A, Maiti M, Lahiri S (2014) Separation of 97Ru from niobium target using PEG based aqueous biphasic systems. J Radioanal Nucl Chem 302:931–937

    Article  CAS  Google Scholar 

  29. Nayak D, Lahiri S (2008) Production of 93mMo through natY(7Li, 3n) reaction and subsequent studies on separation and extraction behaviour of no-carrier-added 93mMo from an yttrium target. Appl Radiat Isot 66:1793–1798

    Article  CAS  Google Scholar 

  30. Sarkar K, Ansari Z, Sen K (2016) Detoxification of Hg(II) from aqueous and enzyme media: pristine vs. tailored calcium alginate hydrogels. Int J Biol Macromol 91:165–173

    Article  CAS  Google Scholar 

  31. Verweij W, ‘CHEAQS PRO’(2005) A program for calculating chemical equilibria in aquatic systems. http://home.tiscali.nl/cheaqs/

  32. Boswell GGJ, Soentono S (1981) Ruthenium nitrosyl complexes in nitric acid solutions. J Inorg Nucl Chem 43:1625–1632

    Article  CAS  Google Scholar 

  33. Maya L (1979) Ruthenium(IV) in nitric acid media. J Inorg Nucl Chem 41:67–71

    Article  CAS  Google Scholar 

  34. Hirst E, Rees DA (1965) The structure of alginic acid. Part V. Isolation and unambiguous characterization of some hydrolysis products of the methylated polysaccharide. J Chem Soc 208:1182–1187

    Article  Google Scholar 

  35. Hassana R, Zaafarany I, Gobouri AA (2013) Temperature-dependence of electrical conductivity for some natural coordination polymeric biomaterials especially cross-linked tetravalent metal-alginate complexes with correlation between the coordination geometry and complex stability. Adv Biosens Bioelectron 2:16–24

    Google Scholar 

  36. Fang L, Li Y, Vreeker R, Appelqvist I, Mendes E (2007) Reexamining the egg-box model in calcium-alginate gels with X-ray diffraction. Biomacromol 8:464–468

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to the staff of BARC-TIFR pelletron, and the target laboratory of TIFR, Mumbai, for their cooperation and help. One of the authors(Kangkana Sarkar) gratefully acknowledges the University Grants Commission (UGC) for providing necessary fellowship. This work is a part of SINP-DAE 12 Five years plan project Trace and Ultratrace Analysis and Isotope Production (TULIP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanta Lahiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, K., Sen, K. & Lahiri, S. Separation of no-carrier-added 97Ru from 11B-induced Y target by encapsulation of 97Ru into calcium alginate hydrogel beads. J Radioanal Nucl Chem 314, 969–973 (2017). https://doi.org/10.1007/s10967-017-5473-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5473-x

Keywords

Navigation