Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 2, pp 969–973 | Cite as

Separation of no-carrier-added 97Ru from 11B-induced Y target by encapsulation of 97Ru into calcium alginate hydrogel beads

Article

Abstract

97Ru radioisotope, a promising candidate for radiopharmaceutical applications was produced by natY(11B,3n) 97Ru reaction with 40 MeV projectile energy. Calcium alginate (CA) hydrogel beads, an environmentally benign matrix, were used for separation of no-carrier-added (NCA) 97Ru from the bulk yttrium target through adsorption–desorption experiments with a high separation factor (S Ru/Y = 2.6 × 104). It was also possible to encapsulate high purity 97Ru in CA hydrogel beads.

Keywords

97Ru No-carrier-added Calcium alginate hydrogel, separation 

Notes

Acknowledgements

We are thankful to the staff of BARC-TIFR pelletron, and the target laboratory of TIFR, Mumbai, for their cooperation and help. One of the authors(Kangkana Sarkar) gratefully acknowledges the University Grants Commission (UGC) for providing necessary fellowship. This work is a part of SINP-DAE 12 Five years plan project Trace and Ultratrace Analysis and Isotope Production (TULIP).

References

  1. 1.
    Liu LS, Kost J, Yan F, Spiro RC (2012) Hydrogels from biopolymer hybrid for biomedical, food, and functional food applications. Polymers 4:997–1011CrossRefGoogle Scholar
  2. 2.
    Caló E, Vitaliy VK (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267CrossRefGoogle Scholar
  3. 3.
    Yagnesh LP, Sher P, Atmaram PP (2006) The effect of drug concentration and curing time on processing and properties of calcium alginate beads containing metronidazole by response surface methodology. AAPS Pharm Sci Tech 7:E24–E30CrossRefGoogle Scholar
  4. 4.
    Nayak D, Lahiri S (2006) Biosorption of toxic, heavy, no-carrier added radionuclides by calcium alginate beads. J Radioanal Nucl Chem 267:59–65CrossRefGoogle Scholar
  5. 5.
    Mandal A, Lahiri S (2011) Separation of 134Cs and 133Ba radionuclides by calcium alginate beads. J Radioanal Nucl Chem 290:115–118CrossRefGoogle Scholar
  6. 6.
    Banerjee A, Nayak D, Lahiri S (2007) Speciation-dependent studies on removal of arsenic by iron-doped calcium alginate beads. Appl Radiat Isot 65:769–775CrossRefGoogle Scholar
  7. 7.
    Nayak D, Banerjee A, Lahiri S (2007) Separation of no-carrier-added 66,67Ga produced in heavy ion-induced cobalt target using alginate biopolymers. Appl Radiat Isotopes 65:891–896CrossRefGoogle Scholar
  8. 8.
    Sarkar K, Lahiri S, Sen K (2016) Separation of no-carrier-added 203Pb, a surrogate radioisotope, from proton irradiated natTl2CO3 target using calcium alginate hydrogel beads. Radiochim Acta 104:891–896CrossRefGoogle Scholar
  9. 9.
    Sarkar K, Sen K, Lahiri S (2017) Separation of long-lived 152Eu radioisotopes from a binary mixture of 152Eu and 134Cs by calcium alginate: a green technique. J Radioanal Nucl Chem 311:2001–2006CrossRefGoogle Scholar
  10. 10.
    Sarkar K, Lahiri S, Sen K (2017) Incorporation of no-carrier added 200,203Pb and 200,201,202Tl in calcium alginate and hesperidin incorporated calcium alginate beads. Appl Radiat Isotopes 121:16–21CrossRefGoogle Scholar
  11. 11.
    Maiti M, Datta A, Lahiri S (2015) Aqueous biphasic separation of 97Ru and 95,96Tc from yttrium. RSC Adv 5:80919–80924CrossRefGoogle Scholar
  12. 12.
    http://www.nndc.bnl.gov/chart [Accessed on 01 Aug 2017]
  13. 13.
    Schachner EA, Gil MC, Atkins HL, Som P, Srivastava SC, Badia J, Sacker DF, Fairchild RG, Richards P (1981) Ruthenium-97 hepatobiliary agents for delayed studies of the biliary tract I: 97Ru PIPIDA. J Nucl Med 22:352–357Google Scholar
  14. 14.
    Richards P, Srivastava S C, George E (1984) Complex of transferrin with ruthenium for medical applications. US patent, 4,448,762, May 15Google Scholar
  15. 15.
    Som P, Oster ZH, Matsui K, Guglielmi G, Persson BRR, Pellettieri ML, Srivastava SC, Richards P, Atkins HL, Brill AB (1983) 97Ru-transferrin uptake in tumor and abscess. Eur J Nucl Med 8:491–494CrossRefGoogle Scholar
  16. 16.
    Oster ZH, Som P, Gil MC, Fairchild RG, Goldman AG, Schachner ER, Sacker DF, Atkins HL, Meinken GE, Srivastava SC, Richards P, Brill AB (1981) Ruthenium-97 DTPA: a new radiopharmaceutical for cisternography. J Nucl Med 22:269–273Google Scholar
  17. 17.
    Uddin MS, Hagiwara M, Baba M, Tarkanyi F, Ditroi F (2005) Experimental studies on excitation functions of the proton-induced activation reactions on silver. Appl Radiat Isot 62:533–540CrossRefGoogle Scholar
  18. 18.
    Lagunas-Solar MC, Avila MJ, Nvarro NJ, Johnson PC (1983) Cyclotron production of no-carrier-added 97Ru by proton bombardment of 103Rh targets. Int J Appl Radiat Isot 34:915–917CrossRefGoogle Scholar
  19. 19.
    Zaitseva NG, Rurarz E, Vobecky M, Hwan KH, Nowak K, Tethal T, Khalkin VA, Popinenkova LM (1992) Excitation function and yield for 97Ru production in 99Tc(p, 3n)97Ru reaction in 20–100 MeV proton energy range. Radiochim Acta 56:59–61CrossRefGoogle Scholar
  20. 20.
    Comar D, Crouzel C (1976) Ruthenium-97 preparation with a compact cyclotron. Radiochem Radioanal Lett 27:307–312Google Scholar
  21. 21.
    Comparetto G, Qaim SM (1980) A comparative study of production of short-lived neutron deficient isotopes 94,95,97Ru in α- and 3He-particle induced nuclear reactions on natural molybdenum. Radiochim Acta 27:177–180CrossRefGoogle Scholar
  22. 22.
    Lahiri S, Mukhopadhyay B, Das NR (1997) LLX separation of carrier-free 94,95,97,103Ru, 93,94,95,96,99mTc and 95,96Nb produced in alpha-particle activated molybdenum by TOA. J Radioanal Nucl Chem 221:167CrossRefGoogle Scholar
  23. 23.
    Lahiri S, Mukhopadhyay B (1997) Liquid–liquid extraction of carrier-free radioisotopes produced in α-particle activated molybdenum target by HDEHP and TBP. Appl Radiat Isot 48:925CrossRefGoogle Scholar
  24. 24.
    Kumar D, Maiti M, Lahiri S (2016) Experimental probe for the production of 97Ru from the 7Li + 93Nb reaction: a study of precompound emissions. Phys Rev C 94:044603CrossRefGoogle Scholar
  25. 25.
    Maiti M, Lahiri S (2011) Production and separation of 97Ru from 7Li activated natural niobium. RadiochimActa 99:359–364Google Scholar
  26. 26.
    Maiti M (2013) Production and separation of 97Ru and coproduced 95Tc from 12C-induced reaction on natural yttrium target. Radiochim Acta 101:437–444CrossRefGoogle Scholar
  27. 27.
    Kumar D, Maiti M, Lahiri S (2017) Production of no-carrier-added 97Ru from 11B-activated natural yttrium target and its subsequent separation using liquid–liquid extraction. Sep Sci Technol. doi: 10.1080/01496395.2017.1279179 Google Scholar
  28. 28.
    Datta A, Maiti M, Lahiri S (2014) Separation of 97Ru from niobium target using PEG based aqueous biphasic systems. J Radioanal Nucl Chem 302:931–937CrossRefGoogle Scholar
  29. 29.
    Nayak D, Lahiri S (2008) Production of 93mMo through natY(7Li, 3n) reaction and subsequent studies on separation and extraction behaviour of no-carrier-added 93mMo from an yttrium target. Appl Radiat Isot 66:1793–1798CrossRefGoogle Scholar
  30. 30.
    Sarkar K, Ansari Z, Sen K (2016) Detoxification of Hg(II) from aqueous and enzyme media: pristine vs. tailored calcium alginate hydrogels. Int J Biol Macromol 91:165–173CrossRefGoogle Scholar
  31. 31.
    Verweij W, ‘CHEAQS PRO’(2005) A program for calculating chemical equilibria in aquatic systems. http://home.tiscali.nl/cheaqs/
  32. 32.
    Boswell GGJ, Soentono S (1981) Ruthenium nitrosyl complexes in nitric acid solutions. J Inorg Nucl Chem 43:1625–1632CrossRefGoogle Scholar
  33. 33.
    Maya L (1979) Ruthenium(IV) in nitric acid media. J Inorg Nucl Chem 41:67–71CrossRefGoogle Scholar
  34. 34.
    Hirst E, Rees DA (1965) The structure of alginic acid. Part V. Isolation and unambiguous characterization of some hydrolysis products of the methylated polysaccharide. J Chem Soc 208:1182–1187CrossRefGoogle Scholar
  35. 35.
    Hassana R, Zaafarany I, Gobouri AA (2013) Temperature-dependence of electrical conductivity for some natural coordination polymeric biomaterials especially cross-linked tetravalent metal-alginate complexes with correlation between the coordination geometry and complex stability. Adv Biosens Bioelectron 2:16–24Google Scholar
  36. 36.
    Fang L, Li Y, Vreeker R, Appelqvist I, Mendes E (2007) Reexamining the egg-box model in calcium-alginate gels with X-ray diffraction. Biomacromol 8:464–468CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of CalcuttaKolkataIndia
  2. 2.Saha Institute of Nuclear PhysicsKolkataIndia
  3. 3.

Personalised recommendations