Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 2, pp 1031–1037 | Cite as

Evaluation of pyridinium-based bifunctional resins for the separation of Pu(IV) from acidic solutions

  • Shiny Suresh Kumar
  • Sucheta Chatterjee
  • Ankita Rao
  • Sunita S. Gamre
  • Ashwani Kumar
  • Anubha Sharma
  • B. S. Tomar


Bifunctional resins having pyridinium and methyl ammonium-based dicationic groups, separated by a five carbon spacer, have been prepared by chemical modification of Reillex™ 402 poly(4-vinyl pyridine). Batch sorption studies carried out for the three resins (I, II, III), which differ by degree of functionalization and physical form, revealed very fast kinetics, with III having highest K D value (650 at 7.5 M). The capacity of III was 4.5 meq/g. The resin was selective for Pu sorption from nitric acid medium having assorted metal ions and the Pu content of resultant raffinate was below the disposal limit. Column experiments with III show fast loading and elution of Pu(IV).


Plutonium Bifunctional resin Distribution ratio Selectivity Nitric acid 



Authors gratefully acknowledge the support from Dr. S. Chattopadhyay, Head, Bio-Organic Division, BARC during this work.


  1. 1.
    Navratil JD (1989) Ion exchange technology in spent fuel reprocessing. J Nucl Sci Technol 26(8):735–743CrossRefGoogle Scholar
  2. 2.
    Jenkins IL (1984) Ion Exchange in the atomic energy industry with particular reference to actinide and fission product separation: a review. Solvent Extr Ion Exch 2(1):1–27CrossRefGoogle Scholar
  3. 3.
    Ion Exchange Technology in the Nuclear Fuel Cycle. IAEA-TECDOC-365, 1986Google Scholar
  4. 4.
    Jenkins IL (1984) Ion exchange in atomic energy industry with particular reference to actinide and fission product separation. Solvent Extr Ion Exch 2(1):1–27CrossRefGoogle Scholar
  5. 5.
    Alexandratos SD, Quillen DR, Mcdowell WJ (1987) Bifunctional phosphinic acid resins for the complexation of lanthanides and actinides. Sep Sci Technol 22(2&3):983–995CrossRefGoogle Scholar
  6. 6.
    Mohandasa J, Kumara T, Rajan SK, Velmurugan S, Narasimhan SV (2008) Introduction of bifunctionality into the phosphinic acid ion-exchange resin for enhancing metal ion complexation. Desalination 232:3–10CrossRefGoogle Scholar
  7. 7.
    Ryan JL, Wheelwright EJ (1959) Recovery and purification of plutonium by anion exchange. Ind Eng Chem Res 51:60–65CrossRefGoogle Scholar
  8. 8.
    Ryan JL, Wheelwright EJ (1959) The recovery, purification, and concentration of plutonium by anion exchange in nitric acid HW-55893Google Scholar
  9. 9.
    Kumaresan R, Sabharwal KN, Srinivasan TG, Vasudeva Rao PR, Dhekane G (2006) Evaluation of new anion exchange resins for plutonium processing. Solvent Extr Ion Exchange 24:589–602CrossRefGoogle Scholar
  10. 10.
    Charyulu MM, Pawar SM, Ray M, Nagi S, Sivaramakrishna CK (1986) The plutonium loading and elution behaviour of the resin Tulsion A-27 (MP). In: Radiochemistry and Radiation Chemistry Symposium held at Tirupati, December 13–17, pp. 347–349Google Scholar
  11. 11.
    Ruhela R, Panja S, Singha AK, Dhami PS, Gandhi PM (2016) Benzododa grafted polymeric resin- plutonium selective solid sorbent. J Hazard Mater 318:186–193CrossRefGoogle Scholar
  12. 12.
    Marsh SF (1990) The effects of ionizing radiation on Reillex TM HPQ, a new macroporous polyvinylpyridine resin, and on four conventional polystyrene anion exchange resins LA–11912Google Scholar
  13. 13.
    Bartenev SA, Zachinyaev GM, Nazin ER, Lazarev LN, Kalashnikov VM, Romanovskii VN, Strelkov SA, Firsin NG, Egorov GF, Hyder ML (2002) Radiation-chemical resistance of anion exchangers safety of sorption processes in nitric acid solutions: III. radiation-chemical resistance of VP-1AP anion exchanger. Radiochemistry 44(2):157–165CrossRefGoogle Scholar
  14. 14.
    Fredric S (1989) Marsh, Macro porous polyvinyl pyridine resin for separating plutonium using nitrate anion exchange. Solvent Extr Ion Exch 7(5):889–908CrossRefGoogle Scholar
  15. 15.
    Marsh SF, Jarvinen GD, Kim JS, Nam J (1997) New bifunctional anion-exchange resins for nuclear waste treatment. React Funct Polym 35:75–80CrossRefGoogle Scholar
  16. 16.
    Marsh SF, Veirs DK, Gordan DJ, Barr ME, Moody EW (2000) Molecularly engineered reins for Pu recovery. Los Alamos Sci 26:463Google Scholar
  17. 17.
    Furniss BS, Hannaford AJ, Smith PWG, Tatchell AR (2008) Vogel’s textbook of practical organic chemistry, 1,5-dibromopentane from tetrahydropyran. Pearson, London, p 563Google Scholar
  18. 18.
    Bartsch RA, Zhao W, Zhang Z-Y (1999) Facile synthesis of (ω-bromoalkyltrimethyl ammonium bromides. Synth Commun 29(14):2393–2398CrossRefGoogle Scholar
  19. 19.
    Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Shiny Suresh Kumar
    • 1
    • 3
  • Sucheta Chatterjee
    • 2
  • Ankita Rao
    • 1
    • 3
  • Sunita S. Gamre
    • 2
  • Ashwani Kumar
    • 1
  • Anubha Sharma
    • 2
  • B. S. Tomar
    • 1
    • 3
  1. 1.Radioanalytical Chemistry DivisionBhabha Atomic Research CentreMumbaiIndia
  2. 2.Bio-Organic DivisionBhabha Atomic Research CentreMumbaiIndia
  3. 3.Homi Bhabha National InstituteMumbaiIndia

Personalised recommendations