Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 2, pp 935–940 | Cite as

Aluminum determination by instrumental neutron activation analysis in tree barks

  • Amanda Noyori
  • Mitiko Saiki
  • Guilherme Soares Zahn


Neutron activation analysis (NAA) for Al determination in tree bark samples containing phosphorus and silicon was studied. The contributions of the 31P(n,α)28Al and 28Si(n,p)28Al reactions to the 27Al(n,γ)28Al reaction were corrected determining interference correction factors. Analytical quality control was evaluated by analyzing certified reference materials. The results presented good accuracy and precision. Replicate Al determinations in bark samples showed relative standard deviations ranging from 4.2 to 10.5%. The detection limits were lower than the mass fractions found in the samples, demonstrating the possibility to apply NAA in Al determinations in tree barks for biomonitoring studies and purposes.


Aluminum Neutron activation analysis Tree barks Interferences 



Authors wish to thank the São Paulo Research Foundation (FAPESP) and the Brazilian National Council for Scientific and Technological Development (CNPq), from Brazil for financial support. The author A. Noyori is grateful for a fellowship from the Brazilian Nuclear Energy Commission.


  1. 1.
    RiihimäkiV Aitio A (2012) Occupational exposure to aluminum and its biomonitoring in perspective. Crit Rev Toxicol 42:827–853CrossRefGoogle Scholar
  2. 2.
    Goyer RA, Clarkson TW (2001) Toxic effects of metals. In: Klaassen CD (ed) Casarett and Doull’s toxicology: the basic science of poison, 6th edn. MacGraw-Hill, New YorkGoogle Scholar
  3. 3.
    Hokura A, Matsuura H, Katsuki F, Haraguchi H (2000) Multielement determination of major to ultrace elements in plant reference materials by ICP-AES/ICP-Ms and evaluation of their enrichment factors. Anal Sci 16:1161–1168CrossRefGoogle Scholar
  4. 4.
    Sun DH, Waters JK, Mawhinney TP (1997) Microwave digestion for determination of aluminum, boron, and other elements in plants by inductively coupled plasma atomic emission spectrometry. J AOAC Int 80:647–650Google Scholar
  5. 5.
    Sun J, Wu Y, Xiao D, Lin X, Li H (2014) Spectrofluorimetric determination of aluminum ions via complexation with luteolin in absolute ethanol. Luminescence 19:456–461CrossRefGoogle Scholar
  6. 6.
    Ziola-Franowska A, Frankowski M, Siepac J (2009) Development of a new analytical method for online simultaneous qualitative determination of aluminium (free aluminium ion, aluminium-fluoride complexes) by HPLC-FAAS. Talanta 78:623–630CrossRefGoogle Scholar
  7. 7.
    Yamamoto Y, Katoh Y, Sato T (2009) Determination of aluminum in various biological materials using instrumental neutron activation analysis. Leg Med 11:5440–5442CrossRefGoogle Scholar
  8. 8.
    Landsberger S, Arendt AM (1989) Non-destructive determination of aluminum in biological reference samples using neutron activation analysis. J Radioanal Nucl Chem 137:443–454CrossRefGoogle Scholar
  9. 9.
    Nanda BB, Biswal RR, Acharya R, Rao JSB, Pujari PK (2014) Determination of aluminium contents in selected food samples by instrumental neutron activation analysis. J Radional Nucl Chem 302:1471–1474CrossRefGoogle Scholar
  10. 10.
    Pacheco AMG, Freitas MC, Barros LIC, Figueira R (2001) Investigating tree bark as an air-pollution biomonitor by means of neutron activation analysis. J Radioanal Nucl Chem 249:327–331CrossRefGoogle Scholar
  11. 11.
    Berlizov AN, Blum OB, Filby RH, Malyuk IA, Tryshyn VV (2007) Testing applicability of black poplar (Populus nigra L.) bark to heavy metal air pollution monitoring in urban and industrial regions. Sci Total Environ 172:693–706CrossRefGoogle Scholar
  12. 12.
    Gielen S, Batlle JV, Vincke C, Van Hees M, Vandenhove H (2016) Concentrations and distributions of Al, Ca, Cl, K, Mg and Mn in a Scots pine forest in Belgium. Ecol Model 324:1–10CrossRefGoogle Scholar
  13. 13.
    Moreira TCP, de Oliveira RC, Amato-Lorenço LF, Kang CM, Saldiva PHN, Saiki M (2016) Intra-urban biomonitoring: source apportionment using tree barks to identify air pollution sources. Environ Int 91:271–275CrossRefGoogle Scholar
  14. 14.
    Amato-Lourenco LF, Lobo DJA, Guimarães LT, Moreira TCP, Carvalho-Oliveira R, Saiki M, Saldiva PHN, Mauad T (2017) Biomonitoring of genotoxic effects and elemental accumulation derived from air pollution in community urban gardens. Sci Total Environ 575:1438–1444CrossRefGoogle Scholar
  15. 15.
    Carvalho-Oliveira R, Amato-Lourenço LF, Moreira TCP, Silva DRR, Vieira BD, Mauad T, Saiki M, Saldiva PHN (2017) Effectiveness of traffic-related elements in tree bark and pollen abortion rates for assessing air pollution exposure on respiratory mortality rates. Environ Int 99:161–169CrossRefGoogle Scholar
  16. 16.
    CETESB—Companhia Ambiental do Estado de São Paulo, Qualar—Qualidade do ar, Accessed 27 Feb. 2016
  17. 17.
    CETESB—Companhia Ambiental do Estado de São Paulo. Material particulado inalável fino (MP2,5) e grosso (MP2,5-10) na atmosfera da Região Metropolitana de São Paulo (2000–2006), 2008. Accessed 10 Mar 2016
  18. 18.
    Schelle E, Rawlins BG, Lark RM, Webster R, Staton I, McLeod CW (2008) Mapping aerial metal deposition in metropolitan areas from tree bark. A case study in Sheffield, England. Environ Pollut 155:164–173CrossRefGoogle Scholar
  19. 19.
    De Soete D, Gijbels R, Hoste J (1972) Neutron activation analysis. Willey-Interscince, LondonGoogle Scholar
  20. 20.
    Wasim M (2013) Interferences in instrumental neutron activation analysis by threshold reactions and uranium fission for miniature neutron source reactor. Radiochim Acta 101:601–606Google Scholar
  21. 21.
    Saiki M, Da Silva MC, Fulfaro R, Vasconcellos MBA (2002) Study on instrumental neutron activation analysis of aluminium in geological and biological reference materials. J Trace Microprobe Tech 20:517–525CrossRefGoogle Scholar
  22. 22.
    Konieczka P, Namieśnik J (2009) Quality assurance and quality control in the analytical chemical laboratory: a practical approach. CRC Press, FloridaCrossRefGoogle Scholar
  23. 23.
    Currie LA (1999) International recommendations offered on analytical detection and quantification concepts and nomenclature. Anal Chim Acta 391:127–134CrossRefGoogle Scholar
  24. 24.
    Masunaga T, Kubota D, Hotta M, Wakatsuki T (1998) Mineral composition of leaves and bark in aluminum accumulators in a tropical rain forest in Indonesia. Soil Sci Plant Nutr 44:347–358CrossRefGoogle Scholar
  25. 25.
    Catinon M, Ayrault S, Boudouma O, Asta J, Tissut M, Ravanel P (2012) Atmospheric element deposit on tree barks: the opposite effects of rain and transpiration. Ecol Indic 14:170–177CrossRefGoogle Scholar
  26. 26.
    Thorpe A, Harriosn RM (2008) Sources and properties of non-exhaust particulate matter from road traffic: a review. Sci Total Environ 400:270–282CrossRefGoogle Scholar
  27. 27.
    Lough GC, Schuer JJ, Park J, Shafer MM, Deminter JT, Wenstein JP (2005) Emissions of metals associated with motor vehicle roadways. Environ Sci Technol 39:826–836CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Amanda Noyori
    • 1
  • Mitiko Saiki
    • 1
  • Guilherme Soares Zahn
    • 1
  1. 1.Neutron Activation Analysis LaboratoryInstituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SPSão PauloBrazil

Personalised recommendations