Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 2, pp 727–736 | Cite as

Measurement of 160Tb and 161Tb in nuclear forensics samples

Article
  • 90 Downloads

Abstract

160Tb and 161Tb are important radionuclides to measure when analysing a Nuclear Forensics sample. An analytical method for the measurement of both 160Tb and 161Tb was developed in this study. Terbium was separated and purified using exchange resin and TrisKem LN Resin. The purified fraction containing 160Tb and 161Tb was measured by gamma spectrometry and liquid scintillation counting. The counting efficiencies of 160Tb and 161Tb were determined using the CIEMAT/NIST efficiency tracing method. The LSC count rate ratio, \({{R_{{{}^{160}{\text{Tb}}}} } \mathord{\left/ {\vphantom {{R_{{{}^{160}{\text{Tb}}}} } {R_{{{}^{161}{\text{Tb}}}} }}} \right. \kern-0pt} {R_{{{}^{161}{\text{Tb}}}} }}\), on the reference date was determined by sequential counting and calculated using a custom script based on their half-lives.

Keywords

160Tb and 161Tb TrisKem LN resin Liquid scintillation counting CIEMAT/NIST (CNET) method Nuclear forensics 

Notes

Acknowledgements

The authors wish to thank Dr. Andy Pearce at National Physical Laboratory (NPL) for providing training on the CNET technique and assistance on the calculation of 160Tb and 161Tb LSC efficiencies using the computer program CN2005.

References

  1. 1.
    Lehto J, Hou X (2011) Chemistry and analysis of radionuclides. Wiley-VCH, WeinheimGoogle Scholar
  2. 2.
    NuDat 2, National Nuclear Data Center, Brookhaven National Laboratory, USA. http://www.nndc.bnl.gov/nudat2/
  3. 3.
    England TR, Rider BF (1993) Evaluation and compilation of fission product yields. LA-UR-94-3106, ENDF-349. Los Alamos National Laboratory, USAGoogle Scholar
  4. 4.
    Payne RF, Schulte SM, Douglas M, Friese JI, Farmer OT III, Finn EC (2011) Investigation of gravity lanthanide separation chemistry. J Radioanal Nucl Chem 287(3):863–867CrossRefGoogle Scholar
  5. 5.
    Arrigo LM, Beck CL, Finn EC, Finch ZS, Gregory SJ, Seiner BN, Snow LA, Metz LA (2014) Optimization of lanthanide separations using Eichrom’s LN resin. American Chemical Society National Meeting, DallasGoogle Scholar
  6. 6.
    TrisKem. Product sheet—LN/LN2/LN3 resins. http://www.triskem-international.com/ iso-album/ft_resin_ln_en_160927.pdf
  7. 7.
    Jiang J, Arrigo LM, Finch ZS (2014) Improvements to the analysis of lanthanides in nuclear forensics samples. In: 60th Radiobioassay & Radiochemical Measurements Conference (RRMC), Knoxville, USGoogle Scholar
  8. 8.
    Jiang J, Davies A, Arrigo LM, Friese J, Seiner BN, Greenwood L, Finch ZS (2015) Analysis of 161Tb by radiochemical separation and liquid scintillation counting. Radiat Isot, Appl. doi: 10.1016/j.apradiso.2015.12.004 Google Scholar
  9. 9.
    Genie2000™ Spectroscopy Software, Canberra Industries Inc., USAGoogle Scholar
  10. 10.
    APEX-Gamma Lab Productivity Suite, Canberra Industries Inc., USAGoogle Scholar
  11. 11.
    Günther E (2001) Computer program CN2001A. Physikalisch-Technische Bundesanstalt, Braunschweig, GermanyGoogle Scholar
  12. 12.
    Günther E (2002) What can we expect from the CIEMAT/NIST method? Appl Radiat Isot 56(1–2):357–360CrossRefGoogle Scholar
  13. 13.
    Günther E (2005) Computer program ATOMIC DATA. Physikalisch-Technische Bundesanstalt, Braunschweig, GermanyGoogle Scholar
  14. 14.
    UKAS (2007) The Expression of uncertainty and confidence in measurement, UKAS Publication M3003, 2nd edn. UKAS, MiddlesexGoogle Scholar
  15. 15.
    Currie LA (1968) Limits for qualitative detection and quantitative determination-application to radiochemistry. Anal Chem 40(3):586–593CrossRefGoogle Scholar
  16. 16.
    King A, Davies A, Saint N, Pockett N (2013) Preliminary investigation into suitable techniques to measure the chemical yield of radionuclides in thermal neutron irradiated samples at AWE. J Radioanal Nucl Chem 296(2):1143–1147CrossRefGoogle Scholar
  17. 17.
    Britton R, Jackson MJ, Davies AV (2015) Quantifying radionuclide signatures from a γ-γ coincidence system. J Environ Radioact 149:158–163CrossRefGoogle Scholar
  18. 18.
    Britton R, Jackson MJ, Davies AV (2016) Incorporating X–ray summing into gamma–gamma signature quantification. Appl Radiat Isot 116:128–133CrossRefGoogle Scholar
  19. 19.
    Jackson MJ, Britton R, Davies AV, McLarty JL, Goodwin M (2016) An automated Monte-Carlo based method for the calculation of cascade summing factors. Nucl Instrum Methods Phys Res Sect A 834:158–163CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.AWE plcReadingUK

Personalised recommendations