Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 2, pp 1393–1404 | Cite as

Evaluation of amide functionalized carbon nanotubes for efficient and selective removal of neptunium: understanding isotherm, kinetics, stripping and radiolytic stability

  • Arijit Sengupta
  • Nishesh Kumar Gupta
  • V. C. Adya


Solid-phase extraction of neptunium in pentavalent and hexavalent oxidation states from the acidic aqueous medium was investigated. The extraction of neptunium, carried out using N,N-dihexylamide functionalized multiwalled carbon nanotubes (MWCNT-DHA) showed high K d values. The sorption was found to follow Freundlich isotherm via chemical interaction between the amide functionality and neptunium. The time-dependent sorption study showed that the kinetics followed pseudo second order rate constants. MWCNT-DHA was found radiolytically stable up to 1000 kGy. The selectivity of MWCNT-DHA for the sorption of Np ion was found to be satisfactory. Citric acid was evaluated as the best strippants.


Distribution coefficient Isotherm Kinetics MWCNT-DHA Neptunium Sorption 



The authors wish to acknowledge Dr. P. K. Pujari, Head, Radiochemistry Division and Dr. R. M. Kadam, Head, Actinide Spectroscopy Section, Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, India.


  1. 1.
    Cotton S (2006) Lanthanide and actinide chemistry. Wiley, West SussexCrossRefGoogle Scholar
  2. 2.
    Taylor DM (1989) The biodistribution and toxicity of plutonium, americium and neptunium. Sci Total Environ 83(3):217–225CrossRefGoogle Scholar
  3. 3.
    Thompson RC (1982) Neptunium: the neglected actinide: a review of the biological and environmental literature. Radiat Res 90(1):1–32CrossRefGoogle Scholar
  4. 4.
    Ando Y, Iijima S (1993) Preparation of carbon nanotubes by arc-discharge evaporation. Jpn J Appl Phys 32:107–109CrossRefGoogle Scholar
  5. 5.
    Hoenlein W, Kreupl F, Duesberg GS, Graham AP, Liebau M, Seidel R, Unger E (2003) Carbon nanotubes for microelectronics: status and future prospects. Mater Sci Eng 23(6–8):663–669CrossRefGoogle Scholar
  6. 6.
    Frackowiak E, Béguin F (2002) Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon 40(10):1775–1787CrossRefGoogle Scholar
  7. 7.
    Frackowiak E, Béguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39(6):937–950CrossRefGoogle Scholar
  8. 8.
    Lee SM, Lee YH (2000) Hydrogen storage in single-walled carbon nanotubes. Appl Phys Lett 76(20):2877–2879CrossRefGoogle Scholar
  9. 9.
    Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386:377–379CrossRefGoogle Scholar
  10. 10.
    Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287(5453):622–625CrossRefGoogle Scholar
  11. 11.
    Modi A, Koratkar N, Lass E, Wei B, Ajayan PM (2003) Miniaturized gas ionization sensors using carbon nanotubes. Nature 424:171–174CrossRefGoogle Scholar
  12. 12.
    Planeix JM, Coustel N, Coq B, Brotons V, Kumbhar PS, Dutartre R, Geneste P, Bernier P, Ajayan PM (1994) Application of carbon nanotubes as supports in heterogeneous catalysis. J Am Chem Soc 116(17):7935–7936CrossRefGoogle Scholar
  13. 13.
    Stafiej A, Pyrzynska K (2007) Adsorption of heavy metal ions with carbon nanotubes. Sep Purif Technol 58(1):49–52CrossRefGoogle Scholar
  14. 14.
    Tofighy MA, Mohammadi T (2011) Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. J Hazard Mater 185(1):140–147CrossRefGoogle Scholar
  15. 15.
    Zhao G, Wu X, Tan X, Wang X (2011) Sorption of heavy metal ions from aqueous solutions: a review. Open Colloid Sci J 4:19–31CrossRefGoogle Scholar
  16. 16.
    Shen X, Wang X, Tao S, Xing B (2014) Displacement and competitive sorption of organic pollutants on multiwalled carbon nanotubes. Environ Sci Pollut Res 21(20):11979–11986CrossRefGoogle Scholar
  17. 17.
    Chen W, Duan L, Zhu D (2007) Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environ Sci Technol 41(24):8295–8300CrossRefGoogle Scholar
  18. 18.
    Salipira KL, Mamba BB, Krause RW, Malefetse TJ, Durbach SH (2007) Carbon nanotubes and cyclodextrin polymers for removing organic pollutants from water. Environ Chem Lett 5(1):13–17CrossRefGoogle Scholar
  19. 19.
    Yu JG, Zhao XH, Yang H, Chen XH, Yang Q, Yu LY, Jiang JH, Chen XQ (2014) Aqueous adsorption and removal of organic contaminants by carbon nanotubes. Sci Total Environ 482–483:241–251CrossRefGoogle Scholar
  20. 20.
    Salam MA (2013) Removal of heavy metal ions from aqueous solutions with multi-walled carbon nanotubes: kinetic and thermodynamic studies. Int J Environ Sci Technol 10(4):677–688CrossRefGoogle Scholar
  21. 21.
    Ahmadpour A, Eftekhari N, Ayati A (2014) Performance of MWCNTs and a low-cost adsorbent for chromium(VI) ion removal. J Nanostruct Chem 4(4):171–178CrossRefGoogle Scholar
  22. 22.
    Sitko R, Zawisza B, Malicka E (2012) Modification of carbon nanotubes for preconcentration, separation and determination of trace-metal ions. TrAC. Trends Anal Chem 37:22–31CrossRefGoogle Scholar
  23. 23.
    Vuković GD, Marinković AD, Čolić M, Ristić MD, Aleksić R, Perić-Grujić AA, Uskoković PS (2010) Removal of cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes. Chem Eng J 157(1):238–248CrossRefGoogle Scholar
  24. 24.
    Chen C, Wang X (2006) Adsorption of Ni(II) from aqueous solution using oxidized multiwall carbon nanotubes. Ind Eng Chem Res 45(26):9144–9149CrossRefGoogle Scholar
  25. 25.
    Liu Y, Li Y, Yan XP (2008) Preparation, characterization, and application of l-cysteine functionalized multiwalled carbon nanotubes as a selective sorbent for separation and preconcentration of heavy metals. Adv Funct Mater 18(10):1536–1543CrossRefGoogle Scholar
  26. 26.
    Xu YJ, Rosa A, Liu X, Su DS (2011) Characterization and use of functionalized carbon nanotubes for the adsorption of heavy metal anions. New Carbon Mater 26(1):57–62CrossRefGoogle Scholar
  27. 27.
    Zakharchenko E, Mokhodoeva O, Malikov D, Molochnikova N, Kulyako Y, Myasoedova G (2012) Novel sorption materials for radionuclide recovery from nitric acid solutions: solid-phase extractants and polymer composites based on carbon nanotubes. Procedia Chem 7:268–274CrossRefGoogle Scholar
  28. 28.
    Liu P, Qi W, Du Y, Li Z, Wang J, Bi J, Wu W (2014) Adsorption of thorium(IV) on magnetic multi-walled carbon nanotubes. Sci China Chem 57(11):1483–1490CrossRefGoogle Scholar
  29. 29.
    Sengupta A, Sheik J, Boda A, Sk Musharaf (2016) An amide functionalized task specific carbon nanotube for the sorption of tetra and hexavalent actinides: experimental and theoretical insight. RSC Adv 6:39553–39562CrossRefGoogle Scholar
  30. 30.
    Fasfous II, Dawoud JN (2012) Uranium (VI) sorption by multiwalled carbon nanotubes from aqueous solution. Appl Surf Sci 259:433–440CrossRefGoogle Scholar
  31. 31.
    Singha Deb AK, Ilaiyaraja P, Ponraju D, Venkatraman B (2012) Diglycolamide functionalized multi-walled carbon nanotubes for removal of uranium from aqueous solution by adsorption. J Radioanal Nucl Chem 291(3):877–883CrossRefGoogle Scholar
  32. 32.
    Kumar P, Sengupta A, Deb AKS, Ali Sk M (2017) Poly(amidoamine) dendrimer functionalized carbon nanotube for efficient sorption of trivalent f-elements: a comparison between 1st and 2nd generation. Chem Select 2:975–985Google Scholar
  33. 33.
    Perevalov SA, Molochnikova NP (2009) Sorption of Pu in various oxidation states onto multiwalled carbon nanotubes. J Radioanal Nucl Chem 281:603–608CrossRefGoogle Scholar
  34. 34.
    Gupta NK, Sengupta A, Boda A, Adya VC, Ali SM (2016) Oxidation state selective sorption behavior of plutonium using N,N-dialkylamide functionalized carbon nanotubes: experimental study and DFT calculation. RSC Adv 6:78692–78701CrossRefGoogle Scholar
  35. 35.
    Lu S, Xu J, Zhang C, Niu Z (2011) Adsorption and desorption of radionuclide europium(III) on multiwalled carbon nanotubes studied by batch techniques. J Radioanal Nucl Chem 287(3):893–898CrossRefGoogle Scholar
  36. 36.
    Tan XL, Xu D, Chen CL, Wang XK, Hu WP (2008) Adsorption and kinetic desorption study of 152+154Eu(III) on multiwall carbon nanotubes from aqueous solution by using chelating resin and XPS methods. Radiochim Acta 96(1):23–29Google Scholar
  37. 37.
    Sengupta A, Singha Deb AK, Kumar P, Dasgupta K, Ali SM (2017) Amidoamine functionalized task specific carbon nanotube for efficient sorption of penta and hexavalent neptunium: experimental and theoretical investigations. J Environ Chem Eng 5(3):3058–3064CrossRefGoogle Scholar
  38. 38.
    Aksoyoglu S, Burkart W, Goerlich W (1991) Sorption of neptunium on clays. J Radioanal Nucl Chem 149(1):119–122CrossRefGoogle Scholar
  39. 39.
    Fröhlich DR, Amayri S, Drebert J, Reich T (2011) Sorption of neptunium(V) on Opalinus Clay under aerobic/anaerobic conditions. Radiochim Acta 99(2):71–77CrossRefGoogle Scholar
  40. 40.
    Nakata K, Fukuda T, Nagasaki S, Tanaka S, Suzuki A, Tanaka T, Muraoka S (1999) Sorption of neptunium on iron-containing minerals. Czech J Phys 49(1):159–166CrossRefGoogle Scholar
  41. 41.
    Songkasiri W, Reed DT, Rittmann BE (2002) Bio-sorption of neptunium(V) by pseudomonas fluorescens. Radiochim Acta 90(9–11):785–789Google Scholar
  42. 42.
    Misra RK, Jain SK, Abraham TN, Khatri PK (2011) Amide functionalization of multiwalled carbon nanotubes and their evaluation for Hg(II) removal from water. Int J Nanosci 10(1–2):205–208CrossRefGoogle Scholar
  43. 43.
    Cvjetićanin DN, Milivoje MV (1975) Separation of various oxidation states of neptunium and plutonium by reversed-phase partition chromatography. J Chromatogr A 103(2):305–310CrossRefGoogle Scholar
  44. 44.
    Li YH, Wang S, Wei J, Zhang X, Xu C, Luan Z, Wu D, Wei B (2002) Lead adsorption on carbon nanotubes. Chem Phys Lett 357(3–4):263–266CrossRefGoogle Scholar
  45. 45.
    Hummer G, Rasaiah JC, Noworyta JP (2001) Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414:188–190CrossRefGoogle Scholar
  46. 46.
    Agnihotri S, Mota JPB, Abadi MR, Rood MJ (2006) Theoretical and experimental investigation of morphology and temperature effects on adsorption of organic vapors in single-walled carbon nanotubes. J Phys Chem B 110:7640–7647CrossRefGoogle Scholar
  47. 47.
    Ünlü N, Ersoz M (2007) Removal of heavy metal ions by using dithiocarbamated-sporopollenin. Sep Purif Technol 52(3):461–469CrossRefGoogle Scholar
  48. 48.
    Azizian S (2004) Kinetic models of sorption: a theoretical analysis. J Colloid Interface Sci 276(1):47–52CrossRefGoogle Scholar
  49. 49.
    Wu FC, Tseng RL, Juang RS (2009) Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem Eng J 153(1–3):1–8Google Scholar
  50. 50.
    Cheung WH, Szeto YS, McKay G (2007) Intraparticle diffusion processes during acid dye adsorption onto chitosan. Bioresour Technol 98(15):2897–2904CrossRefGoogle Scholar
  51. 51.
    Ho YS, McKay G (2000) The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res 34(3):735–742CrossRefGoogle Scholar
  52. 52.
    Ho YS, Ng JCY, McKay G (2001) Removal of lead(ii) from effluents by sorption on peat using second-order kinetics. Sep Sci Technol 36(2):241–261CrossRefGoogle Scholar
  53. 53.
    Hameed BH, Din ATM, Ahmad AL (2007) Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies. J Hazard Mater 141(3):819–825CrossRefGoogle Scholar
  54. 54.
    Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:385–471Google Scholar
  55. 55.
    Olalekan AP, Dada AO, Okewale AO (2013) Comparative adsorption isotherm study of the removal of Pb2+ and Zn2+ onto agricultural waste. Res J Chem Environ Sci 1(5):22–27Google Scholar
  56. 56.
    Mohan S, Karthikeyan J (1997) Removal of lignin and tannin colour from aqueous solution by adsorption onto activated charcoal. Environ Pollut 97(1–2):183–187CrossRefGoogle Scholar
  57. 57.
    El-Kamash AM, Zaki AA, Geleel MAE (2005) Modeling batch kinetics and thermodynamics of zinc and cadmium ions removal from waste solutions using synthetic zeolite A. J Hazard Mater 127:211–220CrossRefGoogle Scholar
  58. 58.
    Shahryari Z, Goharrizi AS, Azadi M (2010) Experimental study of methylene blue adsorption from aqueous solutions onto carbon nanotubes. Int J Water Resour Environ Eng 2(2):16–28Google Scholar
  59. 59.
    Sreekanth PSR, Acharyya K, Talukdar I, Kanagaraj S (2014) Studies on structural defects on 60Co irradiated multi walled carbon nanotubes. Procedia Mater Sci 6:1967–1975CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Arijit Sengupta
    • 1
  • Nishesh Kumar Gupta
    • 2
  • V. C. Adya
    • 1
  1. 1.Radiochemistry DivisionBhabha Atomic Research CentreMumbaiIndia
  2. 2.Department of ChemistryNational Institute of TechnologyRourkelaIndia

Personalised recommendations