Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 2, pp 1367–1373 | Cite as

Study of uranium toxicity using low-background gamma-ray spectrometry

  • A. Srivastava
  • V. Chahar
  • V. Sharma
  • Y. Sun
  • R. Bol
  • F. Knolle
  • E. Schnug
  • F. Hoyler
  • N. Naskar
  • S. Lahiri
  • R. Patnaik
Article
  • 103 Downloads

Abstract

The natural activity of 238U, 232Th and 40K present in soil, fertilizer and palaeosols besides animal fossils was determined using low background gamma ray spectrometry. The highest uranium activity level were found in animal fossils of geogenic origin compared to palaeosols, soils and fertilizers, a result of post-mortem uranium assimilation in these fossils via diagenetic processes. Hence, geogenic mobilization is likely a major cause of elevated uranium levels in Malwa region of Punjab, also known for higher than normal cancer incidence.

Keywords

Uranium Animal fossils Gamma-ray spectrometry Cancer Diagenetic processes 

Notes

Acknowledgements

The authors are grateful to Prof. M. Caffee, Director, Purdue Rare Isotope Measurement (PRIME) Laboratory, Purdue University, USA and Prof. S. Good, Biological and Ecological Engineering Department, Oregon State University, USA for their valuable suggestions to obtain more meaningful information from the data collected. Alok Srivastava is thankful to Alexander von Humboldt Foundation, Germany for providing fund to carry part of the research work in Aachen University of Applied Sciences, Juelich, Germany. Vikash Chahar is grateful to UGC for Junior Research Fellowship. Rajeev Patnaik was supported by MOES project (MoES/P.O. (Geoscience)/46/2015). The gamma ray spectrometric experimental facility provided through UGC-CAS funding to Department of Chemistry, Panjab University, Chandigarh used for initial screening of the samples is also thankfully acknowledged. The support from Department of Atomic Energy through TULIP program to SINP is also gratefully acknowledged. N. Naskar is thankful to UGC for providing Research Fellowship. The contribution of Mr. S. Mohr from Harz National Park, Goslar, Germany in the form of drawing the figures is also gratefully acknowledged.

References

  1. 1.
    Kumar A, Usha N, Sawant PD, Tripathi RM, Raj SS, Mishra M, Rout S, Supreeta P, Singh J, Kumar S, Kushwaha HS (2011) Risk assessment for natural uranium in subsurface water of Punjab State, India. Hum Ecol Risk Assess 17:381–393CrossRefGoogle Scholar
  2. 2.
    Saini K, Bajwa BS (2016) Uranium distribution study in the drinking water samples of SW Punjab, India. Adv Appl Sci Res 7:103–108Google Scholar
  3. 3.
    Bajwa BS, Kumar S, Singh S, Sahoo SK, Tripathi RM (2017) Uranium and other heavy toxic elements distribution in the drinking water samples of SW-Punjab, India. J Radiat Res Appl Sci 10:13–19CrossRefGoogle Scholar
  4. 4.
    Alrakabi M, Singh G, Bhalla A, Kumar S, Kumar S, Srivastava A, Rai B, Singh N, Shahi JS, Mehta D (2012) Study of uranium contamination of ground water in Punjab state in India using X-ray fluorescence technique. J Radioanal Nucl Chem 294:221–227CrossRefGoogle Scholar
  5. 5.
    Singh H, Singh J, Singh S, Bajwa BS (2009) Uranium concentration in drinking water samples using the SSNTDs. Indian J Phys 83:1039–1044CrossRefGoogle Scholar
  6. 6.
    Kochhar N, Gill GS, Tuli N, Dadwal V, Balaram V (2003) Chemical quality of ground water in relation to incidence of cancer in parts of SW Punjab, India. Asian J Water Environ Poll 4:107–112Google Scholar
  7. 7.
    Mehra R, Singh S, Singh K (2007) Uranium studies in water samples belong to Malwa region in Punjab by etching technique. Radiat Meas 42:185–445CrossRefGoogle Scholar
  8. 8.
    World Health Organisation, Guidelines for Drinking-Water Quality, (4th ed.), Geneva, Switzerland, (2011) WHOGoogle Scholar
  9. 9.
    United States Environment Protection Agency (2011) Edition of drinking water Standards and health advisories. USEPAGoogle Scholar
  10. 10.
    Drinking water specifications in India. Department of Atomic Energy, Govt. of India (2004) AERBGoogle Scholar
  11. 11.
    Blaurock-Busch E, Friedle A, Godfrey M, Schulte-Uebbing CE, Smit C (2010) Metal exposure in the children of Punjab, India. Clin Med Insights Ther 2:655–661CrossRefGoogle Scholar
  12. 12.
    Blaurock-Busch E, Busch YM, Friedle A, Buerner H, Parkash C, Kaur A (2014) Comparing the metal concentration in the hair of cancer patients and healthy people living in the Malwa Region of Punjab, India. Clin Med Insights Oncol 8:1–13CrossRefGoogle Scholar
  13. 13.
    Patnaik R, Lahiri S, Chahar V, Naskar N, Sharma PK, Avhad DK, Bassan MKT, Knolle F, Schnug E, Srivastava A (2016) Study of uranium mobilization from Himalayan Siwaliks to the Malwa region of Punjab state in India. J Radioanal Nucl Chem 308:913–918CrossRefGoogle Scholar
  14. 14.
    Kaul R, Umamaheswar K, Chandrasekaran S, Deshmukh RD, Swarnkar BM (1993) Uranium minerlization in the Siwaliks of Northwestern Himalayas, India. J Geol Soc India 41:243–258Google Scholar
  15. 15.
    Sharma M, Sharma YC, Basu B, Chhabra J, Gupta RK, Singh J (2000) Uranium mineralization in the sand-stones of Dharamsala, Tileli area, Mandi district, Himachal Pradesh, India. Curr Sci 78:897–899Google Scholar
  16. 16.
    Kumar R, Tandon SK (1985) Sedimentology of plio-pleistocene late orogenic deposits associated with intraplate subductions—the Upper Siwaliks Subgroup of a part of Panjab Sub-Himalaya, India. Sediment Geol 42:105–158CrossRefGoogle Scholar
  17. 17.
    Parkash B, Sharma RP, Roy AK (1980) The Siwalik group (Molasse)—sediments shed by collision of continental plates. Sediment Geol 25:127–159CrossRefGoogle Scholar
  18. 18.
    Tandon SK (1976) Siwalik sedimentation in a part of the Kumaun Himalaya, India. Sediment Geol 16:131–154CrossRefGoogle Scholar
  19. 19.
    Phadke AV, Mahadevan TM, Das GRN, Saraswat AC (1985) Uranium mineralisation in some phanerozoic sandstones of India. IAEA-TECDOC-328Google Scholar
  20. 20.
    Kumaravel V, Sangode SJ, Kumar R, Siddaiah NS (2005) Magnetic polarity stratigraphy of Pilo-Pleistocene Pinjor formation (type locality), Siwalik group, NW Himalaya, India. Curr Sci 88:1453–1461Google Scholar
  21. 21.
    Sangode SJ, Kumar R, Gosh SK (1996) Magnetic polarity stratigraphy of the Siwalik sequence of Haripur area (H.P.), NW Himalaya, India. J Geol Soc India 47:683–704Google Scholar
  22. 22.
    Rao AR, Nanda AC, Sharma UN, Bhalla MS (1995) Magnetic polarity stratigraphy of the Pinjor Formation (Upper Siwalik) near Pinjor, Haryana. Curr Sci 68:1231–1236Google Scholar
  23. 23.
    Tandon SK, Kumar R, Nittsuma M (1984) Magnetic polarity stratigraphy of Upper Siwalik Sub-group, east of Chandigarh, District of Ambala. J Geol Soc India 25:45–55Google Scholar
  24. 24.
    Naskar N, Lahiri S, Chaudhuri P, Srivastava A (2016) Measurement of naturally occurring radioactive material, 238U and 232Th: anomalies in photo-peak selection. J Radioanal Nucl Chem 310:1381–1396CrossRefGoogle Scholar
  25. 25.
    Naskar N, Lahiri S, Chaudhuri P, Srivastava A (2017) Measurement of naturally occurring radioactive material, 238U and 232Th- Part-2: optimization of counting time. J Radioanal Nucl Chem 312:161–171CrossRefGoogle Scholar
  26. 26.
    Naskar N, Lahiri S, Chaudhuri P, Srivastava A (2017) Measurement of naturally occurring radioactive materials, 238U and 232Th. Part 3: is efficiency calibration necessary for quantitative measurement of ultra-low level NORM? J Radioanal Nucl Chem. doi: 10.1007/s10967-017-5403-y Google Scholar
  27. 27.
    Srivastava A, Lahiri S, Maiti M, Knolle F, Hoyler F, Scherer UW, Schnug EW (2014) Study of naturally occurring radioactive material (NORM) in top soil of Punjab State from the North Western Part of India. J Radioanal Nucl Chem 302:1049–1052CrossRefGoogle Scholar
  28. 28.
    Singh S, Rani A, Mahajan RK (2005) 226Ra, 232Th, and 40K analysis in soil samples from some areas of Punjab and Himachal Pradesh, India, using gamma ray spectrometry. Radiat Meas 39:431–439CrossRefGoogle Scholar
  29. 29.
    Srivastava A, Bains GS, Acharya R, Reddy AVR (2011) Study of seleniferous soils using instrumental neutron activation analysis. Appl Radiat Isotopes 69:818–821CrossRefGoogle Scholar
  30. 30.
    United Nations Scientific Committee on the Effects of Atomic Radiation (1993) Sources and effects of ionizing radiations: UNSCEAR Report to the General Assembly with Scientific Annexes. United Nations. ISBN 92-1-142200-0Google Scholar
  31. 31.
    De Kok LJ, Schnug E (2008) Loads and fate of fertilizer derived uranium. Backhuys Publishers, LeidenGoogle Scholar
  32. 32.
    Schnug E, De Kok LJ (2016) Phosphorus in agriculture: 100% zero. Springer, BerlinGoogle Scholar
  33. 33.
    Kumar P, Tarafdar JC, Painuli DK, Raina P, Singh MP, Beniwal RK, Soni ML, Kumar M, Santra P, Shamsuddin M (2009) Variability in arid soil characteristics. Trend in Arid Zone Research Institute. Central Arid Zone Research Institute, Jodhpur, pp 78–112Google Scholar
  34. 34.
    Taskin H, Karavas M, Ay P, Topuzoglu A, Hidiroglu S, Karahan G (2009) Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey. J Environ Radioact 100:49–53CrossRefGoogle Scholar
  35. 35.
    White MN, Parrish RR, Bickle MJ, Najman YMR, Burbank D, Maithani A (2001) Metamorphism and exhumation of the NW Himalaya constrained by U-Th–Pb analyses of detrital monazite grains from early foreland basin sediments, India. J Geol Soc India 58:625–635CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • A. Srivastava
    • 1
  • V. Chahar
    • 1
  • V. Sharma
    • 1
  • Y. Sun
    • 2
  • R. Bol
    • 2
  • F. Knolle
    • 3
  • E. Schnug
    • 4
  • F. Hoyler
    • 5
  • N. Naskar
    • 6
    • 7
  • S. Lahiri
    • 6
    • 7
  • R. Patnaik
    • 8
  1. 1.Chemistry Department, Centre for Advance StudiesPanjab UniversityChandigarhIndia
  2. 2.Institute of Bio- and Geosciences, IBG-3 AgrosphereForschungzentrum JuelichJülichGermany
  3. 3.Geo Park Harz, Braunschweiger Land, Ostfalen NetworkGoslarGermany
  4. 4.Department of life SciencesTechnical University of BraunschweigBrunswickGermany
  5. 5.Nuclear Science DivisionAachen University of Applied SciencesJülichGermany
  6. 6.Department of Environmental ScienceUniversity of CalcuttaKolkataIndia
  7. 7.Chemical Sciences DivisionSaha Institute of Nuclear PhysicsKolkataIndia
  8. 8.Geology DepartmentPanjab UniversityChandigarhIndia

Personalised recommendations