Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 2, pp 1337–1345 | Cite as

Synthesis and in vitro evaluation of an antiangiogenic cancer-specific dual-targeting 177Lu-Au-nanoradiopharmaceutical

  • Abraham González-Ruíz
  • Guillermina Ferro-Flores
  • Erika Azorín-Vega
  • Blanca Ocampo-García
  • Flor de Maria Ramírez
  • Clara Santos-Cuevas
  • Luis De León-Rodríguez
  • Keila Isaac-Olivé
  • Myrna Luna-Gutiérrez
  • Enrique Morales-Ávila
Article
  • 126 Downloads

Abstract

The aim of this research was to synthesize and chemically characterize a cancer-specific 177Lu-Au-nanoradiopharmaceutical based on gold nanoparticles (NPs), the nuclear localization sequence (NLS)-Arg-Gly-Asp peptide and an aptamer (HS-pentyl-pegaptanib) to target both the α(v)β(3) integrin and the vascular endothelial growth factor (VEGF) overexpressed in the tumor neovasculature, as well as to evaluate by the tube formation assay, the nanosystem capability to inhibit angiogenesis. 177Lu-NP-RGD-NLS-Aptamer was obtained with a radiochemical purity of 99 ± 1%. Complete inhibition of tube formation (angiogenesis) was demonstrated when endothelial cells (EA.hy926), cultured in a 3D-extracellular matrix support, were treated with the developed nanosystem.

Keywords

Lutetium-177 177Lu-gold nanoparticles Antiangiogenic agent RGD HS-pentyl-pegaptanib VEGF inhibition α(v)β(3) integrin 

Notes

Acknowledgements

This study was supported by the Mexican National Council of Science and Technology (CONACYT-SEP-CB-2014-01-242443). This research was carried out as part of the activities of the “Laboratorio Nacional de Investigación y Desarrollo de Radiofármacos, CONACyT”.

Supplementary material

10967_2017_5465_MOESM1_ESM.docx (498 kb)
Supplementary material 1 (DOCX 499 kb)

References

  1. 1.
    Yook S, Cai Z, Lu Y, Winnik MA, Pignol J, Reilly RM (2015) Radiation nanomedicine for EGFR-positive breast cancer: panitumumab-modified gold nanoparticles complexed to the β-particle-emitter, (177)Lu. Mol Pharm 12:3963–3972CrossRefGoogle Scholar
  2. 2.
    Ferro-Flores G, Ocampo-García BE, Santos-Cuevas CL, De Maria Ramirez F, Azorin-Vega EP, Meléndez-Alafort L (2015) Theranostic radiopharmaceuticals based on gold nanoparticles labeled with 177Lu and conjugated to peptides. Curr Radiopharm 8:150–159CrossRefGoogle Scholar
  3. 3.
    Banerjee S, Pillai M, Knapp F (2015) Lutetium-177 therapeutic radiopharmaceuticals: linking chemistry, radiochemistry, and practical applications. Chem Rev 115:2934–2974CrossRefGoogle Scholar
  4. 4.
    Lopes-Bastos BM, Jiang WG, Cai J (2016) Tumour-endothelial cell communications: important and indispensable mediators of tumour angiogenesis. Anticancer Res 36:1119–1126Google Scholar
  5. 5.
    Frezzetti D, Gallo M, Roma C, D’Alessio A, Maiello MR, Bevilacqua S, Normanno N, De Luca A (2016) Vascular endothelial growth factor regulates the secretion of different angiogenic factors in lung cancer cells. J Cell Physiol 231:1514–1521CrossRefGoogle Scholar
  6. 6.
    Lin Z, Zhang Q, Luo W (2016) Angiogenesis inhibitors as therapeutic agents in cancer: challenges and future directions. Eur J Pharmacol 793:76–81CrossRefGoogle Scholar
  7. 7.
    Hoffmann S, He S, Jin M, Ehren M, Wiedemann P, Ryan SJ, Hinton DR (2005) A selective cyclic integrin antagonist blocks the integrin receptors αvβ3 and αvβ5 and inhibits retinal pigment epithelium cell attachment, migration and invasion. BMC Ophthalmol 5:16CrossRefGoogle Scholar
  8. 8.
    Ellert-Miklaszewska A, Poleszak K, Kaminska B (2017) Short peptides interfering with signaling pathways as new therapeutic tools for cancer treatment. Future Med Chem 9:199–221CrossRefGoogle Scholar
  9. 9.
    Ocampo-García BE, Santos-Cuevas CL, De León-Rodríguez LM, García-Becerra R, Ordaz-Rosado D, Luna-Guitiérrez MA, Jiménez-Mancilla NP, Romero-Piña ME, Ferro-Flores G (2013) Design and biological evaluation of 99mTc-N2S2-Tat (49–57)-c(RGDyK): a hybrid radiopharmaceutical for tumors expressing α(v)β(3) integrins. Nucl Med Biol 40:481–487CrossRefGoogle Scholar
  10. 10.
    Xiang D, Shigdar S, Qiao G, Wang T, Kouzani AZ, Zhou SF, Kong L, Li Y, Pu C, Duan W (2015) Nucleic acid aptamer-guided cancer therapeutics and diagnostics: the next generation of cancer medicine. Theranostics 5:23CrossRefGoogle Scholar
  11. 11.
    Zhou G, Wilson G, Hebbard L, Duan W, Liddle C, George J, Qiao L (2016) Aptamers: a promising chemical antibody for cancer therapy. Oncotarget 7:13446CrossRefGoogle Scholar
  12. 12.
    Davis GE, Senger DR (2005) Endothelial extracellular matrix, biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ Res 97:1093–1107CrossRefGoogle Scholar
  13. 13.
    Shallal HM, Minn I, Banerjee SR, Lisok A, Mease RC, Pomper MG (2014) Heterobivalent agents targeting PSMA and integrin-αvβ3. Bioconjugate Chem 25:393–405CrossRefGoogle Scholar
  14. 14.
    Zhang J, Niu G, Lang L, Li F, Fan X, Yan X, Yao S, Yan W, Huo L, Chen L (2017) Clinical translation of a dual integrin αvβ3–and gastrin-releasing peptide receptor–targeting PET radiotracer, 68Ga-BBN-RGD. J Nucl Med 58:228–234CrossRefGoogle Scholar
  15. 15.
    Eder M, Schäfer M, Bauder-Wüst U, Haberkorn U, Eisenhut M, Kopka K (2014) Preclinical evaluation of a bispecific low-molecular heterodimer targeting both PSMA and GRPR for improved PET imaging and therapy of prostate cancer. Prostate 74:659–668CrossRefGoogle Scholar
  16. 16.
    Morales-Avila E, Ferro-Flores G, Ocampo-García BE, De León-Rodríguez LM, Santos-Cuevas CL, García-Becerra R, Medina LA, Gómez-Oliván L (2011) Multimeric system of 99mTc-labeled gold nanoparticles conjugated to c[RGDfK(C)] for molecular imaging of tumor α(v)β(3) expression. Bioconjugate Chem 22:913–922CrossRefGoogle Scholar
  17. 17.
    Luna-Gutiérrez M, Ferro-Flores G, Ocampo-García BE, Santos-Cuevas CL, Jiménez-Mancilla N, León-Rodríguez D, Azorín-Vega E, Isaac-Olivé K (2013) A therapeutic system of 177Lu-labeled gold nanoparticles-RGD internalized in breast cancer cells. J Mex Chem Soc 57:212–219Google Scholar
  18. 18.
    Aranda E, Owen GI (2009) A semi-quantitative assay to screen for angiogenic compounds and compounds with angiogenic potential using the EA.hy926 endothelial cell line. Biol Res 42:377–389CrossRefGoogle Scholar
  19. 19.
    Vilchis-Juárez A, Ferro-Flores G, Santos-Cuevas C, Morales-Avila E, Ocampo-García BE, Díaz-Nieto L, Luna-Gutiérrez M, Jiménez-Mancilla N, Pedraza-López M, Gómez-Oliván L (2014) Molecular targeting radiotherapy with cyclo-RGDFK (C) peptides conjugated to 177Lu-labeled gold nanoparticles in tumor-bearing mice. J Biomed Nanotechnol 10:393–404CrossRefGoogle Scholar
  20. 20.
    Socrates G (2004) Infrared and Raman characteristic group frequencies: tables and charts. Wiley, New JerseyGoogle Scholar
  21. 21.
    Jiménez-Mancilla N, Ferro-Flores G, Santos-Cuevas C, Ocampo-García B, Luna-Gutiérrez M, Azorín-Vega E, Isaac-Olivé K, Camacho-López M, Torres-García E (2013) Multifunctional targeted therapy system based on 99mTc/177Lu-labeled gold nanoparticles-Tat (49–57)-Lys3-bombesin internalized in nuclei of prostate cancer cells. J Labelled Compd Radiopharm 56:663–671CrossRefGoogle Scholar
  22. 22.
    Pan Y, Ding H, Qin L, Zhao X, Cai J, Du B (2013) Gold nanoparticles induce nanostructural reorganization of VEGFR2 to repress angiogenesis. J Biomed Nanotechnol 9:1746–1756CrossRefGoogle Scholar
  23. 23.
    Kang B, Mackey MA, El-Sayed MA (2010) Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J Am Chem Soc 132:1517–1519CrossRefGoogle Scholar
  24. 24.
    Dykman LA, Khlebtsov NG (2013) Uptake of engineered gold nanoparticles into mammalian cells. Chem Rev 114:1258–1288CrossRefGoogle Scholar
  25. 25.
    Zhang J, Liu B, Liu H, Zhang X, Tan W (2013) Aptamer-conjugated gold nanoparticles for bioanalysis. Nanomedicine 8:983–993CrossRefGoogle Scholar
  26. 26.
    Yeom JH, Joo M, Lee B, Kim KP, Ha NC, Park Y, Bae J, Lee K (2017) Intracellular delivery of recombinant proteins via gold nanoparticle-DNA aptamer composites is independent of the protein physicochemical properties and cell type. J Ind Eng Chem 45:5–10CrossRefGoogle Scholar
  27. 27.
    Goswami N, Yao Q, Luo Z, Li J, Chen T, Xie J (2016) Luminescent metal nanoclusters with aggregation-induced emission. J Phys Chem Lett 7:962–975CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Abraham González-Ruíz
    • 1
    • 2
  • Guillermina Ferro-Flores
    • 1
  • Erika Azorín-Vega
    • 1
  • Blanca Ocampo-García
    • 1
  • Flor de Maria Ramírez
    • 1
  • Clara Santos-Cuevas
    • 1
  • Luis De León-Rodríguez
    • 3
  • Keila Isaac-Olivé
    • 2
  • Myrna Luna-Gutiérrez
    • 1
  • Enrique Morales-Ávila
    • 2
  1. 1.Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/NOcoyoacacMexico
  2. 2.Universidad Autónoma del Estado de México, Paseo Tollocan S/NTolucaMexico
  3. 3.The University of AucklandAucklandNew Zealand

Personalised recommendations