Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 2, pp 1063–1073 | Cite as

Speciation modeling and sorption mechanism for decontamination of naturally occurring radionuclide from sulfuric acid liquor by anion exchange process

  • Sameh H. Othman
  • Azza A. Ezz Eldin
  • Emad H. Borai
  • Wageha H. Mahmoud
Article

Abstract

Various uranyl sulfate complexes are formed during the digestion of monazite mineral by sulfuric acid. Uranyl sulfate sorption by AMBERJET 4200 Cl has been studied to find out the proper mechanism, equilibrium and kinetics basis. At pH of 3.0 and 0.5 M SO4 the dominant solution species of U(VI) is [UO2(SO4)3]−4 anionic complex. High sorbent affinity and monolayer sorption mechanism are approved by different isotherms. The rate is found to be controlled by surface adsorption and intra-particle diffusion. The equilibrium equation and kinetic parameters are estimated. The thermodynamic studies reveal that the reaction is endothermic and spontaneous.

Keywords

Uranium AMBERJET 4200 Cl Sorption isotherms Uptake kinetics 

References

  1. 1.
    Yusan S, Akyil S (2008) Sorption of uranium (VI) from aqueous solutions by akaganeite. J Hazard Mater 160:388–395CrossRefGoogle Scholar
  2. 2.
    Krestou A, Xenidis A, Panias D (2004) Mechanism of aqueous uranium (VI) uptake by hydroxyapatite. Miner Eng 17:373–381CrossRefGoogle Scholar
  3. 3.
    Michard P, Guibal E, Vincent T, Le Cloirec P (1996) Sorption and desorption of uranyl ions by silica gel: pH, particle size and porosity effects. Microporous Mater 5:309–324CrossRefGoogle Scholar
  4. 4.
    Tsuruta T (2002) Removal and recovery of uranyl ion using various microorganisms. J Biosci Bioeng 94:23–28CrossRefGoogle Scholar
  5. 5.
    Kulkarni PS (2003) Recovery of uranium (VI) from acidic wastes using tri-n-octylphosphine oxide and sodium carbonate based liquid membranes. Chem Eng J 92:209–214CrossRefGoogle Scholar
  6. 6.
    Chaudhury S, Singh Mudher KD, Venugopal V (2003) Recovery of uranium from fluoride matrix by solid state reaction routes. J Nucl Mater 322:119–125CrossRefGoogle Scholar
  7. 7.
    Amamoto I, Terai T, Oobayashi H, Fujit R (2005) Separation and recovery study of uranium from spent NaF (fillers). J Phys Chem Solids 66:602–607CrossRefGoogle Scholar
  8. 8.
    Mirjalili K, Roshani M (2007) Resin-in-pulp method for uranium recovery from leached pulp of low grade uranium ore. Hydrometallurgy 85:103–109CrossRefGoogle Scholar
  9. 9.
    James D, Venkateswaran G, PrasadaRao T (2009) Removal of uranium from mining industry feed simulant solutions using trapped amidoxime functionality within a mesoporous imprinted polymer material. Microporous Mesoporous Mater 119:165–170CrossRefGoogle Scholar
  10. 10.
    Akhtar K, Khalid AM, Akhtar MW, Ghauri MA (2009) Removal and recovery of uranium from aqueous solutions by Ca-alginate immobilized trichodermaharzianum. Bioresour Technol 100:4551–4558CrossRefGoogle Scholar
  11. 11.
    Singh SK, Dhami PS, Tripathi SC, Dakshinamoorthy A (2009) Studies on the recovery of uranium from phosphoric acid medium using synergistic mixture of (2-Ethyl hexyl) Phosphonic acid, mono (2-ethyl hexyl) ester (PC88A) and Tri-nbutyl phosphate (TBP). Hydrometallurgy 95:170–174CrossRefGoogle Scholar
  12. 12.
    Zhang Z, Clifford DA (1994) Exhausting and regenerating resin for uranium removal. J Am Water Works Assoc 86:228–241Google Scholar
  13. 13.
    Song Y, Wang Y, Wang L, Song C, Yang ZZ, Zhao A (1999) Recovery of uranium from carbonate solutions using strongly basicanion exchanger. React Funct Polym 39:245–252CrossRefGoogle Scholar
  14. 14.
    Huikuri P, Salonen L (2000) Removal of uranium from Finnish ground waters in domestic use with a strong base anion resin. J Radioanal Nucl Chem 245:385–393CrossRefGoogle Scholar
  15. 15.
    Chellam S, Clifford DA (2002) Physical–chemical treatment of groundwater contamined by leachate from surface disposal of uranium tailings. J Environ Eng 128:942–952CrossRefGoogle Scholar
  16. 16.
    Sheta ME, Kandil AT, Abd El-Aal MM (2012) Eleventh Arab Conference on the peaceful Use of Atomic Energy, Khartoum Sudan, 16–20 DecemberGoogle Scholar
  17. 17.
    Rabie KA, Abd El-Moneam YK, Abd El-Fatah AI, Demerdash M, Salem AR (2014) Adaptation of anion exchange process to decontaminate monazite rare earth group from its uranium content. IJRET: 2321–7308Google Scholar
  18. 18.
    Kouraim MN, Sheta ME, Abd El-Aal MM (2014) Investigation of uranium sorption from acidic sulfate solution using organosilicate compound and Amberlite IRA 402. Eur J Chem 5:446–450CrossRefGoogle Scholar
  19. 19.
    Navratil JD (1989) Ion exchange technology in spent fuel reprocessing. J Nucl Sci Technol 26:735–743CrossRefGoogle Scholar
  20. 20.
    Ladeira Ana CQ, Morais CA (2005) Effect of ammonium, carbonate and fluoride concentration on the uranium recovery by resins. Radiochim Acta 93:207–209Google Scholar
  21. 21.
    Gott MD, Ballard BD, Redman LN, Maassen JR, Taylor WA, Engle JW, Nortier FM, Birnbaum ER, John KD, Wilbur DS, Cutler CS, Ketring AR, Jurisson SS, Fassbender ME (2014) Radiochemical study of re/w adsorption behavior on a strongly basic anion exchange resin. Radiochim Acta 102:325–332CrossRefGoogle Scholar
  22. 22.
    Marczenko Z (1986) Separation and spectrophotometric determination of elements. Ellis Harwood, ChichesterGoogle Scholar
  23. 23.
    Sheha RR, El-Zahhar AA (2008) Synthesis of some ferromagnetic composite resins and their metal removal characteristics in aqueous solutions. J Hazard Mater 795–803:150Google Scholar
  24. 24.
    Sheha RR (2007) Sorption of Zn (II) ions on synthesized hydroxyapatites. J Colloid Interface Sci 310:18–26CrossRefGoogle Scholar
  25. 25.
    Guillaumont R, Fanghänel T, Neck V, Fuger J, Palmer DR, Grenthe I, Rand MH (2003) Chemical thermodynamics 5, 5th edn. Elsevier, HeidelbergGoogle Scholar
  26. 26.
    Sakaguchi T, Nakajima A (1987) Accumulation of uranium by biopigments. J Chem Technol Biotechnol 40:133–141CrossRefGoogle Scholar
  27. 27.
    Aslani MAA, Eral M (1994) Investigation of uranium recovery from dilute aqueous solutions using silk fibroin. Biol Trace Elem Res 737:737–743CrossRefGoogle Scholar
  28. 28.
    Boonamnuayvitaya V, Chaiya C, Tanthapanichakoon W, Jarudilokkul S (2004) Removal of heavy metals by adsorbents prepared from pyrolyzed coffee residues and clay. Sep Purif Technol 35:11–22CrossRefGoogle Scholar
  29. 29.
    Huh JK, Song DI, Jeon YW (2000) Sorption of phenol and alkylphenols from aqueous solution onto organically modified montmorillonite and applications of dual-mode sorption model. Sep Sci Technol 35:243–259CrossRefGoogle Scholar
  30. 30.
    Lagergren S (1898) About the theory of so called adsorption of soluble substances. Kung Sven Veten Hand 24:1–39Google Scholar
  31. 31.
    Freundlich H (1906) Uber die adsorption in losungen (Adsorption in solution). Z Phys Chem 57:387–470Google Scholar
  32. 32.
    Justi KC, Fávere VT, Laranjeira MCM, Neves A, Peralta RA (2005) Kinetics and equilibrium adsorption of Cu(II), Cd (II), and Ni(II) ions by chitosan functionalized with 2[-bis-(pyridylmethyl)aminomethyl]-4-methyl-6-formylphenol. J Colloid Interface Sci 291:369–374CrossRefGoogle Scholar
  33. 33.
    Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465CrossRefGoogle Scholar
  34. 34.
    Kobiraj R, Gupta N, Kushwaha AK, Chattopadhyaya MC (2012) Determination of equilibrium, kinetic and thermodynamic parameters for the adsorption of Brilliant Green dye from aqueous solutions onto eggshell powder. Indian J Chem Technol 19:26–31Google Scholar
  35. 35.
    Hameed BH, Ahmad AA, Aziz N (2007) Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash. Chem Eng J 133:195–203CrossRefGoogle Scholar
  36. 36.
    Glasston S, Laidler KJ, Eyring H (1941) The theory of rate processes. McGraw Hill, New YorkGoogle Scholar
  37. 37.
    Wu FC, Tseng RL, Juang RS (2001) Kinetic modeling of liquid-phase adsorption of reactive dyes and metal ions on chitosan. Water Res 35:613–618CrossRefGoogle Scholar
  38. 38.
    Cooney DO (1998) Adsorption design for wastewater treatment. CRC Press, Boca RatonGoogle Scholar
  39. 39.
    Moulin JP, Pareau D, Rakib M, Stambouli M(2004) Transfert de matière, autresopérationscompartimentées. Techniques de l’ingenieur, Génie des Procédés, J1073, Paris, FranceGoogle Scholar
  40. 40.
    Othman SH, Ali AH, Mansour NA, El Anadouli BE (2012) The effect of external and internal diffusion on the sorption of radioactive ions by reactive cloth filter—part I. J Radioanal Nucl Chem 291:685–698CrossRefGoogle Scholar
  41. 41.
    Othman SH, Saleh MM, Demerdash M, El Anadouli BE (2010) Mathematical model: retention of beryllium on flow-through fixed bed reactor of Amb-IR-120. J Chem Eng 156:157–164CrossRefGoogle Scholar
  42. 42.
    Ali AH, Othman SH (2011) A physico-chemical parametric study on the retention of radioactive ions in a fixed bed reactor. Chem Eng J 178:375–383CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Sameh H. Othman
    • 1
  • Azza A. Ezz Eldin
    • 1
  • Emad H. Borai
    • 2
  • Wageha H. Mahmoud
    • 3
  1. 1.Nuclear Research Center, Atomic Energy AuthorityCairoEgypt
  2. 2.Department of Analytical ChemistryHot Laboratory Centre, Atomic Energy AuthorityCairoEgypt
  3. 3.Department of ChemistryAin Shams UniversityCairoEgypt

Personalised recommendations