Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 2, pp 1273–1277 | Cite as

Revision of nuclear data of 235U and 226Ra for the 186-keV gamma-ray peak for the determination of activity in environmental samples

  • Le Quang Vuong
  • Huynh Dinh Chuong
  • Vo Hoang Nguyen
  • Nguyen Quoc Hung
  • Tran Thien Thanh
  • Chau Van Tao
Article

Abstract

In this work, the ratio contribution of 226Ra and 235U in γ spectra with the latest update nuclear data will be revised. The results showed that in the total count rate of the 186 keV peak consists of 57.2% of 226Ra (186.2 keV) and 42.8% of 235U (185.7 keV) with the existence of equilibrium. These calculations were used for determining mass activity of 238U for the direct and fast measurement using only the 186 keV peak and verifying the 238U–226Ra secular equilibrium. An equilibrium method was measured secular equilibrium of decay chain 238U (by the product daughter 214Bi-609.3 keV) that was used for this study. The maximum relative deviation was less than 4.0% between both methods proved the direct method was reliable and can be applied to determine the mass activity of 238U in the radioactive equilibrium samples.

Keywords

Direct method Equilibrium method Secular equilibrium Gamma spectrometry 

Notes

Acknowledgements

This research is funded by Vietnam National University Ho Chi Minh City under Grant Number B2017-18-02.

References

  1. 1.
    Corte FD, Umans H, Vandenberghe D, Wispelaere AD, Van den Haute P (2005) Direct gamma-spectrometric measurement of the 226Ra 186.2 keV line for detecting 238U/226Ra disequilibrium in determining the environmental dose rate for the luminescence dating of sediments. Appl Radiat Isot 63:589–598CrossRefGoogle Scholar
  2. 2.
    Ebaid YY (2010) Use of gamma-ray spectrometry for uranium isotopic analysis in environmental samples. Rom J Phys 55:69–74Google Scholar
  3. 3.
    Völgyesi P, Kis Z, Szabó Z, Szabo C (2014) Using the 186-keV peak for 226Ra activity concentration determination in Hungarian coal-slag samples by gamma-ray spectroscopy. J Radioanal Nucl Chem 302:375–383CrossRefGoogle Scholar
  4. 4.
    Huy NQ, Luyen TV (2004) A method to determine 238U activity in environmental soil samples by using 63.3-keV-photopeak-gamma HPGe spectrometer. Appl Radiat Isot 61:1419–1424CrossRefGoogle Scholar
  5. 5.
    Thanh TT, Loan TTH, Nhon MV, Tao CV (2014) Improvement of passive shielding to reduce background components to determinate radioactivity at low energy gamma rays. Kerntechnik 79:247–252CrossRefGoogle Scholar
  6. 6.
    Ebaid YY, El-Mongy SA, Allam KA (2005) 235U-γ emission contribution to the 186 keV energy transition of 226Ra in environmental samples activity calculations. Int Congr Ser 1276:409–411CrossRefGoogle Scholar
  7. 7.
    Gilmore G (2008) Practical gamma-ray spectrometry, 2nd edn. Wiley, WeinheimCrossRefGoogle Scholar
  8. 8.
    Hung NQ, Chuong HD, Vuong LQ, Thanh TT, Tao CV (2016) Intercomparison NaI(Tl) and HPGe spectrometry to studies of natural radioactivity on geological samples. J Environ Radioact 164:197–201CrossRefGoogle Scholar
  9. 9.
    http://www.nucleide.org/Laraweb/. Accessed 28 July 2017
  10. 10.
    GUM (2008) Evaluation of measurement data—introduction to the “Guide to the expression of uncertainty in measurement” and related document. BIPM. http://www.bipm.org
  11. 11.
    Lépy MC, Ferreux L, Hamon C, Plagnard J (2008) Logicised d’ajustement des courbes de rendement ACORES. Note tech. LNHB 2008-2045Google Scholar
  12. 12.
    Lépy MC (2004) Presentation of the COLEGRAM software. Note tech. LNHB 04/26Google Scholar
  13. 13.
    Rangaswamy DR, Srilatha MC, Ningappa C, Srinivasa E, Sannappa J (2016) Measurement of natural radioactivity and radiation hazards assessment in rock samples of Ramanagara and Tumkur Districts, Karnataka, India. Environ Earth Sci 75:373 (1–11)Google Scholar
  14. 14.
    Srilatha MC, Rangaswamy DR, Sannappa J (2015) Measurement of natural radioactivity and radiation hazard assessment in the soil samples of Ramanagara and Tumkur districts, Karnataka, India. J Radioanal Nucl Chem 303:993–1003CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Le Quang Vuong
    • 1
  • Huynh Dinh Chuong
    • 2
  • Vo Hoang Nguyen
    • 1
  • Nguyen Quoc Hung
    • 1
  • Tran Thien Thanh
    • 1
    • 2
  • Chau Van Tao
    • 1
    • 2
  1. 1.Department of Nuclear Physics, Faculty of Physics and Engineering PhysicsVNUHCM-University of ScienceHo Chi Minh CityVietnam
  2. 2.Nuclear Technique LaboratoryVNUHCM-University of ScienceHo Chi Minh CityVietnam

Personalised recommendations