Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 2, pp 1183–1188 | Cite as

Effect of gamma-ray irradiation on surface flashover of poly(styrene-co-divinyl benzene) in vacuum

  • Huan He
  • Guangying Mu
  • Fangchao Wan
  • Quanyao Zhu
  • Meng Wang
Article

Abstract

Poly(styrene-co-divinyl benzene) was irradiated under gamma-rays at various doses up to 25.6 kGy. The samples were analyzed by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) before and after the irradiation, and the flashover voltage of materials under different irradiation dose was measured. Results showed that the surface of material was oxidized after irradiation and the oxygen content was the highest (12.29%) when the irradiation dose was 19.2 kGy. In addition, flashover voltages decreased for irradiated samples as compared with the non-irradiated one (R0), and their flashover voltages values were inversely proportional to the oxygen content.

Keywords

Poly(styrene-co-divinyl benzene) Gamma-ray irradiation Oxidation XPS Flashover voltage 

Notes

Acknowledgements

The work was financially supported by National Natural Science Foundation of China (51472189); Key Laboratory of Pulsed Power, CAEP, No. PPLF2013PZ07.

References

  1. 1.
    Grzybowski S, Kuffel E, Mcmath JPC (1973) IEEE Trans Electr Insul 7(4):180–185Google Scholar
  2. 2.
    Rohlfs AF, Fiegel HE, Anderson JG (1961) Trans Am Inst Electr Eng Part III Power Appar Syst. 80(3):463–470Google Scholar
  3. 3.
    Banford HM, Fouracre RA, Macgregor SJ (1998) Conf IEEE Int Symp Electr Insul 2(2):558–561Google Scholar
  4. 4.
    Kuriyama I, Hayakawa N, Nakase Y (1979) IEEE Trans Electr Insul 14(5):272–277CrossRefGoogle Scholar
  5. 5.
    Blodgett RB, Fisher RG (1969) IEEE Trans Power Appar Syst 88(5):529–541CrossRefGoogle Scholar
  6. 6.
    Tang JP, Qiu AC, Chen WQ (2003) High Power Laser Part Beams 15(10):1019–1022Google Scholar
  7. 7.
    Yamamoto O, Hara T, Nakae T (1990) IEEE Trans Electr Insul 24(6):991–994CrossRefGoogle Scholar
  8. 8.
    Huang WL, Sun GS, Yan P (2006) High Power Laser Part Beams 18(7):1229–1232Google Scholar
  9. 9.
    Elshereafy E, El-Zayat MM, Shaltout NA (2015) J Radioannal Nucl Chem 307(2):1–9Google Scholar
  10. 10.
    Du BX, Liu HJ, Liu Y (2007) IEEE Trans on Dielectr Electr Insul 14(3):696–701CrossRefGoogle Scholar
  11. 11.
    Aljoumaa K, Ajji Z (2016) J Radioannal Nucl Chem 307(2):1391–1399CrossRefGoogle Scholar
  12. 12.
    Albano C, Perera R, Silva P (2003) Polym Bull 51(2):135–142CrossRefGoogle Scholar
  13. 13.
    Mariani M, Consolati G (2010) J Radioannal Nucl Chem 286(3):625–629CrossRefGoogle Scholar
  14. 14.
    Gao Y, Du BX (2012) Int Conf High Volt Eng Appl 229–232Google Scholar
  15. 15.
    Nogami M, Sugiyama Y, Kawasaki T (2013) J Radioannal Nucl Chem 296(1):423–427Google Scholar
  16. 16.
    Ilčin M, Holá O, Bakajová B (2010) J Radioannal Nucl Chem 283(1):9–13CrossRefGoogle Scholar
  17. 17.
    Avdienko AA, Malev MD (1977) Vaccum 27(12):643–651CrossRefGoogle Scholar
  18. 18.
    Boersch H (1963) Z Angew Phys 15:518–525Google Scholar
  19. 19.
    Tang JP, Qiu AC, Chen Y (2007) Solid Dielectr IEEE Int Conf 733–736Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Huan He
    • 1
  • Guangying Mu
    • 1
  • Fangchao Wan
    • 1
  • Quanyao Zhu
    • 1
  • Meng Wang
    • 2
  1. 1.School of Materials Science and EngineeringWuhan University of TechnologyWuhanChina
  2. 2.Institute of Fluid PhysicsChina Academy of EngineeringMianyangChina

Personalised recommendations