Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 2, pp 1051–1062 | Cite as

Production of 99Mo/99mTc via photoneutron reaction using natural molybdenum and enriched 100Mo: part 1, theoretical analysis

  • T. Michael Martin
  • Talal Harahsheh
  • Benjamin Munoz
  • Zaher Hamoui
  • Ryan Clanton
  • Jordan Douglas
  • Peter Brown
  • Gamal Akabani
Article

Abstract

A theoretical analysis was performed for the production of 99Mo via the 100Mo(γ,n)99Mo reaction using natural (natMo) and enriched (100Mo) molybdenum targets in a modified NIRTA® Targetry system. High energy electrons from a linear accelerator were simulated on a tungsten converter to produce bremsstrahlung incident on molybdenum targets using the TALYS computer code. All open channels and decay schemes were used to assess the production rates and final amounts of radioactive and stable components at end-of-bombardment (3-day irradiation), and after 2 h of cooling. Computations were performed at an accelerator energy of 40 MeV, correlating to a maximized photon fluence at 14 MeV. Impurities of Zr and Nb were found when utilizing enriched 100Mo (excluding Mo isotopes). Targets utilizing natMo added substantial stable and radioactive impurities of Mo, Nb, Zr, Y, and Sr; however, all but the Mo impurities can be readily separated. This study confirms the potential of producing 99Mo via 100Mo(γ,n)99Mo using natMo with manageable impurities.

Keywords

Technetium Molybdenum Accelerator LINAC Radiopharmaceutical Production 

Supplementary material

10967_2017_5455_MOESM1_ESM.docx (50 kb)
Supplementary material 1 (DOCX 49 kb)

References

  1. 1.
    Tollesfon J (2016) Reactor shutdown threatens world’s medical isotope supply. International Weekly Journal of Science web, November 2016Google Scholar
  2. 2.
    Koster U (2013) Present day production of Mo-99 and alternatives. Paper presented at the Nuclear Instruments and Methods Research, Institut Laue Langevin, Grenoble, FranceGoogle Scholar
  3. 3.
    OECD NEA (2010) Review of potential molybdenum-99/technetium-99m production technologies. The supply of medical radioisotopes. Organization for Economic Co-operation and DevelopmentGoogle Scholar
  4. 4.
    US firms target revival in domestic Mo-99 production, World Nuclear News. http://www.world-nuclear-news.org/C-US-firms-target-revival-in-domestic-Mo-99-production-01051501.html. 01 May 2015
  5. 5.
    IAEA (2013) Non-HEU production technologies for molybdenum-99 and technetium-99m IAEA nuclear energy series No. NF-T-5.4. IAEA, ViennaGoogle Scholar
  6. 6.
    Welsh J, Bigles CI, Valderrabano A (2015) Future U.S. supply of Mo-99 production through fission based LEU/LEU technology. J Radioanal Nucl Chem 305(1):9–12. doi: 10.1007/s10967-015-4090-9 CrossRefGoogle Scholar
  7. 7.
    Neilly B, Allen S, Ballinger J, Buscombe J, Clarke R, Ellis B, Flux G, Fraser L, Hall A, Owen H, Paterson A, Perkins A, Scarsbrook A (2015) Future supply of medical radioisotopes for the UK report 2014. arXivorg physics.med-phGoogle Scholar
  8. 8.
    IAEA (2008) Homogeneous aqueous solution nuclear reactors for the production of Mo-99 and other short lived radioisotopes. IAEA/TECDOC, vol 1601Google Scholar
  9. 9.
    Stichelbaut F, Jongen Y (2011) Design of accelerator-based solutions to produce 99Mo using lowly-enriched uranium. Nucl Sci Technol 2:284–288. doi: 10.1016/j.nucmedbio.2010.04.115 CrossRefGoogle Scholar
  10. 10.
    Cuttler JM (2010) Producing Mo-99 in CANDU reactors. In: Canadian Nuclear Society, Montreal, QuebecGoogle Scholar
  11. 11.
    Nagai Y, Hatsukawa Y (2009) Production of Mo-99 for nuclear medicine by Mo-100(n,2n)Mo-99. J Phys Soc Jpn 78(3):033201. doi: 10.1143/JPSJ.78.033201 CrossRefGoogle Scholar
  12. 12.
    Blaauw M, Ridikas D, Baytelesov S, Salas PS, Chakrova Y, Eun-Ha C, Dahalan R, Fortunato AH, Jacimovic R, Kling A, Munoz L, Mohamed NM, Parkanyi D, Singh T, Van Dong D (2017) Estimation of 99Mo production rates from natural molybdenum in research reactors. J Radioanal Nucl Chem 311(1):409–418. doi: 10.1007/s10967-016-5036-6 CrossRefGoogle Scholar
  13. 13.
    IAEA (2015) Feasibility of producing 99Mo on a small scale using fission of low enriched uranium or neutron activation of natural molybdenum. Technical reports series, vol 478. International Atomic Energy Agency, Vienna, AustriaGoogle Scholar
  14. 14.
    Nagai Y, Nakahara Y, Kawabata M (2017) Quality of 99mTcO4− from 99Mo produced by 100Mo (n, 2 n) 99Mo. J Phys Soc Jpn 86(5):053202. doi: 10.7566/JPSJ.86.053202 CrossRefGoogle Scholar
  15. 15.
    Bertsche K (2010) Accelerator production options for Mo-99. Journal Name: Conf.Proc.C100523:MOPEA025, 2010; Conference: 1st international particle accelerator conference: IPAC’10, 23–28 May 2010, Kyoto, Japan. SLAC National Accelerator Laboratory (SLAC)Google Scholar
  16. 16.
    Tsechanski A, Bielajew AF, Archambault JP (2016) Electron accelerator-based production of molybdenum-99: bremsstrahlung and photoneutron generation from molybdenum vs. tungsten. Nucl Instrum Methods Phys Res Sect B 366:124–139. doi: 10.1016/j.nimb.2015.10.057 CrossRefGoogle Scholar
  17. 17.
    de Jong MS (2015) Producing medical isotopes with electron linacs. In: 2015 CAP congress, Calgary, Alberta, CA, 16 Jun 2015Google Scholar
  18. 18.
    Nakai K, Takahashi N, Hatazawa J, Shinohara A, Hayashi Y, Ikeda H, Kanai Y, Watabe T, Fukuda M, Hatanaka K (2014) Feasibility studies towards future self-sufficient supply of the 99Mo-99mTc isotopes with Japanese accelerators. Proc Jpn Acad Ser B 90(10):413–421. doi: 10.2183/pjab.90.413 CrossRefGoogle Scholar
  19. 19.
    Gopalakrishna A, Naik H, Suryanarayana SV, Naik Y, Nimje VT, Nayak BK, Sarkar SK, Padmanabhan S, Kothalkar C, Naskar P, Dey AC, Goswami A (2016) Preparation of 99Mo from the 100Mo(γ, n) reaction and chemical separation of 99mTc. J Radioanal Nucl Chem 308(2):431–438. doi: 10.1007/s10967-015-4481-y CrossRefGoogle Scholar
  20. 20.
    Beaver JE, Hupf HB (1971) Production of Tc-99m on a medical cyclotron: a feasibility study. J Nucl Med 12(11):739–741Google Scholar
  21. 21.
    Cieszykowska I, Janiak T, Barcikowski T, Mielcarski M, Mikolajczak R, Choinski J, Barlak M, Kurpaska L (2017) Manufacturing and characterization of molybdenum pellets used as targets for 99mTc production in cyclotron. Appl Radiat Isot 124:124–131. doi: 10.1016/j.apradiso.2017.03.006 CrossRefGoogle Scholar
  22. 22.
    Lagunas-Solar MC, Kiefer PM, Carvacho OF, Lagunas CA, Cha YP (1991) Cyclotron production of NCA 99mTc and 99Mo. An alternative non-reactor supply source of instant 99mTc and 99Mo—99mTc generators. Int J Radiat Appl Instrum A 42(7):643–657CrossRefGoogle Scholar
  23. 23.
    Strydom HJ, Ronander E, Viljoen J, Kemp G, Grant JJ, Uys PE, Esterhuyse BD (2016) Production of 100Mo for Cyclotron conversion to 99mTc. Paper presented at the 2016 Mo-99 topical meeting, St. Louis, Missouri, 11–14 Sept 2016Google Scholar
  24. 24.
    Naik H, Suryanarayana SV, Jagadeesan KC, Thakare SV, Josh PV, Nimje VT, Mitta KC, Goswami A, Venugopal V, Kailas S (2013) An alternative route for the preparation of the medical isotope 99Mo from the 238U(γ, f) and 100Mo(γ, n) reactions. J Radioanal Nucl Chem 295(1):807–816CrossRefGoogle Scholar
  25. 25.
    Ronander E, Strydom HJ, Viljoen J (2012) ASP separation technology for isotope and gas separation. Paper presented at the 12th International Worshop on Separation Phenomena in Liquids and Gases, Paris, France, 2012Google Scholar
  26. 26.
    Ross CK, Diamond WT (2015) Predictions regarding the supply of 99Mo and 99mTc when NRU ceases production in 2018. ArXiv e-prints 1506Google Scholar
  27. 27.
    Rovais MR, Aardaneh K, Aslani G, Rahiminejad A, Yousefi K, Boulouri F (2016) Assessment of the direct cyclotron production of (99m)Tc: an approach to crisis management of (99m)Tc shortage. Appl Radiat Isot 112:55–61. doi: 10.1016/j.apradiso.2016.03.017 CrossRefGoogle Scholar
  28. 28.
    Celler A, Hou X, Benard F, Ruth T (2011) Theoretical modeling of yields for proton-induced reactions on natural and enriched molybdenum targets. Phys Med Biol 56(17):5469–5484. doi: 10.1088/0031-9155/56/17/002 CrossRefGoogle Scholar
  29. 29.
    Lebeda O, van Lier EJ, Stursa J, Ralis J, Zyuzin A (2012) Assessment of radionuclidic impurities in cyclotron produced (99m)Tc. Nucl Med Biol 39(8):1286–1291. doi: 10.1016/j.nucmedbio.2012.06.009 CrossRefGoogle Scholar
  30. 30.
    Stolarz A, Kowalska JA, Jasinski P, Janiak T, Samorajczyk J (2015) Molybdenum targets produced by mechanical reshaping. J Radioanal Nucl Chem 305(3):947–952. doi: 10.1007/s10967-015-3956-1 CrossRefGoogle Scholar
  31. 31.
    Rasor NS, McClelland JD (1960) Thermal properties of graphite, molybdenum and tantalum to their destruction temperatures. J Phys Chem Solids 15(1):17–26. doi: 10.1016/0022-3697(60)90095-0 CrossRefGoogle Scholar
  32. 32.
    Soppera N, Bossant M, Dupont E (2014) JANIS 4: an improved version of the NEA java-based nuclear data information system. Nucl Data Sheets 120:294–296. doi: 10.1016/j.nds.2014.07.071 CrossRefGoogle Scholar
  33. 33.
    Koning AJ, Rochman D, Kopecky J, Sublet JC, Bauge E, Hilaire S, Romain P, Morillon B, Duarte H, van der Marck S, Pomp S, Sjostrand H, Forrest R, Henriksson H, Cabellos O, Goriely S, Leppanen J, Leeb H, Plompen A, Mills R (2015) TENDL-2015: TALYS-based evaluated nuclear data library. https://tendl.web.psi.ch/tendl_2015/tendl2015.html. Accessed Feb 2017
  34. 34.
    Koning AJ, Rochman D (2012) Modern nuclear data evaluation with the TALYS code system. Nucl Data Sheets 113(12):2841–2934. doi: 10.1016/j.nds.2012.11.002 CrossRefGoogle Scholar
  35. 35.
    Koning AJ, Hilaire S, Duijvestijn MC (2008) TALYS-1.0. In: Bersillon O, Gunsing F, Bauge E, Jacqmin R, Leray S (eds) Proceedings of the international conference on nuclear data for science and technology—ND2007, Nice, France, 2007. EDP Sciences, 2008, pp 211–214Google Scholar
  36. 36.
    NNDC (2017) Q-value calculator. http://www.nndc.bnl.gov/qcalc/
  37. 37.
    Goorley T (2012) Initial MCNP6 release overview. Nucl Technol 180(3):298–315CrossRefGoogle Scholar
  38. 38.
    Beil H, Bergère R, Carlos P, Leprêtre A, De Miniac A, Veyssière A (1974) A study of the photoneutron contribution to the giant dipole resonance in doubly even Mo isotopes. Nucl Phys A 227(3):427–449. doi: 10.1016/0375-9474(74)90769-6 CrossRefGoogle Scholar
  39. 39.
    Kosako K, Oishi K, Nakamura T, Takada M, Sato K, Kamiyama T, Kiyanagi Y (2010) Angular distribution of bremsstrahlung from copper and tungsten targets bombarded by 18, 28, and 38 MeV electrons. J Nucl Sci Technol 47(3):286–294. doi: 10.1080/18811248.2010.9711956 CrossRefGoogle Scholar
  40. 40.
    Nordell B, Brahme A (1984) Angular distribution and yield from bremsstrahlung targets (for radiation therapy). Phys Med Biol 29(7):797–810CrossRefGoogle Scholar
  41. 41.
    Takada M, Kosako K, Oishi K, Nakamura T, Sato K, Kamiyama T, Kiyanagi Y (2013) Angular distributions of absorbed dose of Bremsstrahlung and secondary electrons induced by 18-, 28- and 38-MeV electron beams in thick targets. Radiat Prot Dosim 153(3):369–383. doi: 10.1093/rpd/ncs114 CrossRefGoogle Scholar
  42. 42.
    NCRP (2005) Radiation protection for particle accelerator facilities: recommendations of the National Council on Radiation Protection and Measurements. NCRP report no. 144, Washington, DCGoogle Scholar
  43. 43.
    NCRP (1964) Shielding for high-energy electron accelerator installations; recommendations of the National Council on Radiation Protection and Measurements. NCRP report no. 97. National Bureau of Standards, Washington, DCGoogle Scholar
  44. 44.
    Tur YD (2000) Linear electron accelerator for the medical isotopes production. In: 7th European particle accelerator conference, Vienna, Austria, 2000. EPAC, pp 2560–2562Google Scholar
  45. 45.
    Morley TJ, Dodd M, Gagnon K, Hanemaayer V, Wilson J, McQuarrie SA, English W, Ruth TJ, Benard F, Schaffer P (2012) An automated module for the separation and purification of cyclotron-produced 99mTcO4. Nucl Med Biol 39(4):551–559. doi: 10.1016/j.nucmedbio.2011.10.006 CrossRefGoogle Scholar
  46. 46.
    Gagnon K, Wilson JS, Holt CM, Abrams DN, McEwan AJ, Mitlin D, McQuarrie SA (2012) Cyclotron production of (9)(9)mTc: recycling of enriched (1)(0)(0)Mo metal targets. Appl Radiat Isot 70(8):1685–1690. doi: 10.1016/j.apradiso.2012.04.016 CrossRefGoogle Scholar
  47. 47.
    Das MK, Das SS, Madhusmita Nayer MA, Chattopadhyay S, Barua L, Datta S (2017) Separation of Mo from Nb, Zr and Y: applicability in the purification of the recovered enriched 100Mo used in the direct production of 99mTc in cyclotrons. J Radioanal Nucl Chem 311(1):643–647. doi: 10.1007/s10967-016-5000-5 CrossRefGoogle Scholar
  48. 48.
    Lewis RE (1971) Production of high specific activity 99Mo for preparation of technetium-99m generators. Int J Appl Radiat Is 22(10):603–609. doi: 10.1016/0020-708x(71)90027-5 CrossRefGoogle Scholar
  49. 49.
    de Jong MS (2012) Producing medical isotopes using X-rays. In: IPAC congress 2012, New Orleans, LA, 24 May 2012, pp 3177–3179Google Scholar
  50. 50.
    FDA (1989) Drug master files: guidelines. Center for Drug Evaluation and Research. Food and Drug Administration, RockvilleGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Department of Nuclear EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.Environmental Health Safety and Corporate ServicesMD Anderson Cancer CenterHoustonUSA
  3. 3.MEVEX CorporationStittsvilleCanada
  4. 4.Texas A&M Institute for Preclinical StudiesCollege StationUSA

Personalised recommendations