Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 2, pp 689–694 | Cite as

Development of continuous inflow tritium measurement in water technology using electrolysis and a plastic scintillator

Article
  • 162 Downloads

Abstract

Our goal was to develop a mobile tritium monitor for continuous inflow system for water sample. The system is based on electrolysis and a plastic scintillator detection system. The minimum detectable activity (MDA) of the prototype system is 431 kBq L−1, while the MDA of a commercially available product is 740 kBq L−1. We expected to achieve a 5.73-times lower MDA by optimizing detection geometry using a multi-hydrogen-gas-channel. The system can be applied either as a mobile leakage surveying method or as a fixed-type monitor for detecting tritium in drinking water by adapting conventional background reduction technologies.

Keywords

Electrolysis Tritium Continuous monitoring Plastic scintillator Minimum detectable activity 

Notes

Acknowledgements

This work was supported by the Industrial Technology Innovation Program (2016520101340, Real-time Underwater Tritium Monitoring Technology by Electrolysis) funded by the Korea Institute of Energy Technology Evaluation and Planning (KETEP, Korea) and supported by the National Research Foundation of Korea (NRF) grant, funded by the Korean government (MSIP: Ministry of Science, ICT, and Future Planning) (Nos. 2016M2B2B1945083 and NRF-22A20153413555).

References

  1. 1.
    Chae JS, Lee SK, Kim Y, Lee JM, Cho HJ, Cho YW, Yun JY (2011) Distribution of tritium in water vapour and precipitation around Wolsung nuclear power plant. Radiat Prot Dosim. 146(1–3):330–333CrossRefGoogle Scholar
  2. 2.
    Singh AN, Rathnakaran M (1987) An instrument for online monitoring of tritium-in-air in heavy-water reactors. Nucl Instrum Method A 258(2):250–254. doi: 10.1016/0168-9002(87)90065-9 CrossRefGoogle Scholar
  3. 3.
    Grahek Z, Breznik B, Stojkovic I, Coha I, Nikolov J, Todorovic N (2016) Measurement of tritium in the Sava and Danube Rivers. J Environ Radioact 162:56–67. doi: 10.1016/j.jenvrad.2016.05.014 CrossRefGoogle Scholar
  4. 4.
    Hofstetter KJ, Beals DM, Halverson JE, Villa-Aleman E, Hayes DW (2001) Law enforcement tools available at the Savannah River Site. J Radioanal Nucl Chem 248(3):683–687. doi: 10.1023/A:1010636627313 CrossRefGoogle Scholar
  5. 5.
    Bunja M, Pristavka M, Korenko M, Dostal P (2014) Monitoring liquid radioactive waste discharges released from nuclear power plant. Adv Mater Res 1059:83–90CrossRefGoogle Scholar
  6. 6.
    Douglas M, Bernacki BE, Erchinger JL, Finn EC, Fuller ES, Hoppe EW, Keillor ME, Morley SM, Mullen CA, Orrell JL, Panisko ME, Warren GA, Wright ME (2016) Liquid scintillation counting of environmental radionuclides: a review of the impact of background reduction. J Radioanal Nucl Chem 307(3):2495–2504CrossRefGoogle Scholar
  7. 7.
    Monitor of tritium in air (2017) Canberra Industries. http://www.canberra.com/fr/produits/env_rad_monitoring/tritium-air-monitors.asp. Accessed 24 May 2017
  8. 8.
    Tritium online analyzer DTionix (2017) Premium Analyse. http://www.premium-analyse.com/en/online-analyzers.php. Accessed 24 May 2017
  9. 9.
    Charalambus S, Goebel K (1963) Low level proportional counter for tritium. Nucl Instrum Method 25:109–117CrossRefGoogle Scholar
  10. 10.
    Bonicalzi RM, Aalseth CE, Day AR, Hoppe EW, Mace EK, Moran JJ, Overman CT, Panisko ME, Seifert A (2016) Optimization of simultaneous tritium-radiocarbon internal gas proportional counting. Nucl Instrum Method A 813:19–28CrossRefGoogle Scholar
  11. 11.
    Mace EK, Aalseth CE, Day AR, Hoppe EW, Keillor ME, Moran JJ, Panisko ME, Seifert A, Tatishvili G, Williams RM (2016) First results of a simultaneous measurement of tritium and C-14 in an ultra-low-background proportional counter for environmental sources of methane. J Environ Radioact 155:122–129CrossRefGoogle Scholar
  12. 12.
    Tritium in water monitor real time continuous (2017) Technical Associates. http://www.tech-associates.com/product-info/LIQ-X-(H3).pdf. Accessed 24 May 2017
  13. 13.
    Cember H, Johnson TE (2009) Introduction to heath physics, 4th edn. Mc Graw Hill, New YorkGoogle Scholar
  14. 14.
    Sauzay G, Schell WR (1972) Analysis of low level tritium concentrations by electrolytic enrichment and liquid scintillation counting. J Appl Radiat Isot 23:25–33CrossRefGoogle Scholar
  15. 15.
    Plastino W, Chereji I, Cuna S, Kaihola L, De Felice P, Lupsa N, Balas G, Mirel V, Berdea P, Baciu C (2007) Tritium in water electrolytic enrichment and liquid scintillation counting. Radiat Meas 42(1):68–73CrossRefGoogle Scholar
  16. 16.
    Soreefan AM, DeVol TA (2009) Proportional counting of tritium gas generated by polymer electrolyte membrane (PEM) electrolysis. J Radioanal Nucl Chem. 282:517–521CrossRefGoogle Scholar
  17. 17.
    Kaufman S, Libby WF (1954) The natural distribution of tritium. Phys Rev 93:6CrossRefGoogle Scholar
  18. 18.
    Soreefan AM, DeVol TA (2009) Determination of tritium enrichment parameters of a commercially available PEM electrolyzer: a comparison with conventional enrichment electrolysis. J Radioanal Nucl Chem 282:511–515CrossRefGoogle Scholar
  19. 19.
    Prael R, Sweezy J, Waters L, Wilcox T, Zukaitis T (2012) Initial MCNP6 release overview. Nucl Technol 180:298–315CrossRefGoogle Scholar
  20. 20.
    Butarbutar SL, Sanguanmith S, Meesungnoen J, Causey P, Stuart CR, Jay-Gerin JP (2014) Self-radiolysis of tritiated water. 2. Density dependence of the yields of primary species formed in the radiolysis of supercritical water by tritium beta-particles at 400 °C. Rsc Adv 4(44):22980–22988CrossRefGoogle Scholar
  21. 21.
    Furuta E, Kawano T (2015) A plastic scintillation counter prototype. Appl Radiat Isot 104:175–180CrossRefGoogle Scholar
  22. 22.
    Casanovas R, Morant JJ, Salvado M (2013) Implementation of gamma-ray spectrometry in two real-time water monitors using NaI(Tl) scintillation detectors. Appl Radiat Isot 80:49–55CrossRefGoogle Scholar
  23. 23.
    Casanovas R, Morant JJ, Salvado M (2014) Development and calibration of a real-time airborne radioactivity monitor using direct gamma-ray spectrometry with two scintillation detectors. Appl Radiat Isot 89:102–108CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Department of Nuclear EngineeringUlsan National Institute of Science and TechnologyUlsanRepublic of Korea

Personalised recommendations