Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 2, pp 991–999 | Cite as

A study of probable alpha-ternary fission fragments of 257Fm

  • H. C. Manjunatha
  • N. Sowmya
  • K. N. Sridhar
  • L. Seenappa


The probable α-accompanied cold ternary fission fragments of 257Fm are studied using six types of nuclear proximity potentials. We have studied the driving potential, probability, relative yield and half-lives of possible alpha ternary fission fragments. It is clear from present study that the alpha accompanied cold ternary fission reactions of 257Fm having minimum driving potential, maximum fission yield and small fission half lives for 48Ca + 205Pt + 4He. Hence this combination is recognized as most probable alpha ternary fission fragments of 257Fm due to the presence of doubly magic nucleus 48Ca. This study finds important in the experiments on alpha ternary fission of 257Fm.


Alpha ternary fission Proximity potential Alpha-ternary fission Fermium Fission 


  1. 1.
    Piot J et al (2012) In-beam spectroscopy with intense ion beams: evidence for a rotational structure in 246Fm. Phys Rev C 85:041301CrossRefGoogle Scholar
  2. 2.
    Amiel S et al (1957) Production and properties of the nuclides fermium-250, 251, and 252. Phys Rev C 106(3):553CrossRefGoogle Scholar
  3. 3.
    Kaur Manpreet, Sharma Manoj K, Gupta Raj K (2012) Effects of deformations and orientations in the fission of the actinide nuclear system 254Fm formed in the 11B + 243Am reaction. Phys Rev C 86:064610CrossRefGoogle Scholar
  4. 4.
    Dubray N, Goutte H, Delaroche JP (2008) Structure properties of 226Th and 256,258,260Fm fission fragments: mean-field analysis with the Gogny force. Phys Rev C 77:014310CrossRefGoogle Scholar
  5. 5.
    Sikkeland T, Ghiqrso A, Latimer R, Larsh AE (1965) Decay properties of the nuclides Fer-iurn-256 and -257 and Mendelevium-255, -256, and -257. Phys Rev C 140(2B):277CrossRefGoogle Scholar
  6. 6.
    Cheifetz E, Bowman HR, Hunter JB, Thompson SG (1971), Prompt neutrons from spontaneous fission of 257Fm. Phys Rev C 3(5) 2017Google Scholar
  7. 7.
    Balagna JP, Foxd GP, Hoffman DC, Knight SD (1971) Mass symmetry in the spontaneous fission of 257Fm. Phys Rev C 26(3):145Google Scholar
  8. 8.
    Fong Peter (1974) Symmetric fission of 257Fm. Phys Rev C 9(6):2448CrossRefGoogle Scholar
  9. 9.
    Gindler JE, Flynn KF, Glendenin LE, Sjoblom RK (1977) Distribution of mass, kinetic energy, and neutron yield in the spontaneous fission of 254Fm. Phys Rev C 16:1483CrossRefGoogle Scholar
  10. 10.
    Lustig HJ, Maruhn JA, Greiner W (1980) Transitions in the fission mass distributions of the fermium isotopes. J Phys G: Nucl Part Phys 6:L25CrossRefGoogle Scholar
  11. 11.
    John WE, Hulet K, Lougheed RW, Wejolowski JJ (1971) Symmetric fission observed in thermal-neutron-induced and spontaneous fission of 257Fm. Phys Rev Lett 27:45CrossRefGoogle Scholar
  12. 12.
    Flynn KF, Gindler JE (1975) Glendenin. LE Distribution of mass in thermal-neutron-induced fission of 257Fm. Phys Rev C 12:1478CrossRefGoogle Scholar
  13. 13.
    Hulet EK, Lougheed RW, Landrum JH, Wild JF, Hoffman DC et al (1980) Spontaneous fission of 259Fm. Phys Rev C 21:966CrossRefGoogle Scholar
  14. 14.
    Hulet EK, Wild JF, Lougheed RW, Evans JE et al (1971) Spontaneous-Fission half-life of 258Fm and nuclear instability. Phys Rev Lett 26:523CrossRefGoogle Scholar
  15. 15.
    Bonneau L (2006) Fission modes of 256Fm and 258Fm in a microscopic approach. Phys Rev C 74:014301CrossRefGoogle Scholar
  16. 16.
    Wild JF, Baisden PA, Dougan RJ, Hulet EK et al (1985) Light-charged-particle emission in the spontaneous fission of 250Cf, 256Fm, and 257Fm. Phys Rev C 32:488CrossRefGoogle Scholar
  17. 17.
    Britt HC, Hoffman DC, van der Plicht J, Wilhelmy JB et al (1984) Fission of 255,256Es, 255–257Fm, and 258Md at moderate excitation energies. Phys Rev C 30:559CrossRefGoogle Scholar
  18. 18.
    Zagrebaev VI, Karpov AV, Greiner Walter (2010) True ternary fission of superheavy nuclei. Phys Rev C 81:044608CrossRefGoogle Scholar
  19. 19.
    Muga ML, Rice CR, Sedlaceki WA (1967) Ternary fission of uranium-236 and 234. Phy rev 161(4):1266–1283CrossRefGoogle Scholar
  20. 20.
    Iyer RH, Cobble JW (1966) Evidence of ternary fission at lower energies. Phys Rev Lett. 17(10):541–545CrossRefGoogle Scholar
  21. 21.
    Koster U, Faust H, Fioni G, Friedrichs T et al (1999) Ternary fission yields of 241Pu(nth, f). Nucl Phys A 652:371–387CrossRefGoogle Scholar
  22. 22.
    Ramanna R, Nair KG (1963) Emission of alpha particles in the fission process. Phys Rev 129(3):1350–1354CrossRefGoogle Scholar
  23. 23.
    Bass R (1973) Threshold and angular momentum limit in the complete fusion of heavy ions. Phys Lett B 47:139–142CrossRefGoogle Scholar
  24. 24.
    Blocki J, Randrup J, S´wia˛tecki WJ, Tsang CF (1977) Ann Phys (NY) 105:427CrossRefGoogle Scholar
  25. 25.
    Naumann RA (1960) Preparation of long-lived terbium-157 and terbium-158. J Inorg Nucl Chem 16(1):163–164CrossRefGoogle Scholar
  26. 26.
    Myers WD, Swiatecki WJ (1974) The nuclear droplet model for arbitrary shapes. Ann Phys 84(1–2):186–210CrossRefGoogle Scholar
  27. 27.
    Poenaru DN, Gherghescu RA, Greiner W (2012) Cluster decay of super heavy nuclei. Phys Rev C 85:034615CrossRefGoogle Scholar
  28. 28.
    Blocki J, Swiatecki WJ (1983) A generalization of the proximity force theorem. Ann Phys (NY) 132:53–65CrossRefGoogle Scholar
  29. 29.
    Moller P, Nix JR (1981) Nuclear mass formula with a Yukawa-plus-exponential macroscopic model and a folded-Yukawa single-particle potential. Nucl Phys A 361(1):117–146CrossRefGoogle Scholar
  30. 30.
    Reisdorf W (1994) Heavy-ion reactions close to the Coulomb barrier. J Phys G: Nucl Part Phys 20:1297CrossRefGoogle Scholar
  31. 31.
    Myers WD, Swiatecki WJ (2000) Nucleus-nucleus proximity potential and superheavy nuclei. Phys Rev C 62:044610CrossRefGoogle Scholar
  32. 32.
    de Jager CW, de Vries H, de Vries C (1974) Nuclear charge- and magnetization-density-distribution parameters from elastic electron scattering. At Data Nucl Data Tables 14:479–487CrossRefGoogle Scholar
  33. 33.
    Brueckner KA, Buchler JR, Kelly M (1968) New theoretical approach to nuclear heavy-ion scattering. Phys Rev 173:944–954CrossRefGoogle Scholar
  34. 34.
    Myers WD, Swiatecki WJ (1980) Droplet-model theory of the neutron skin. Nucl Phys A 336(2):267–278CrossRefGoogle Scholar
  35. 35.
    Poenaru DN, Ivascu M, Sandulescu A, Greiner W (1985) Atomic nuclei decay modes by spontaneous emission of heavy ions. Phys Rev C 32:572–582CrossRefGoogle Scholar
  36. 36.
    Manjunatha HC, Chandrika BM, Seenappa L (2016) Empirical formula for mass excess of heavy and superheavy nuclei Mod. Phys Lett A 31(28):1650162Google Scholar
  37. 37.
    Wang M, Audi G, Wapstra AH, Kondev FG et al (2012) The Ame2012 atomic mass evaluation. Chin Phys C 36:1603–1695CrossRefGoogle Scholar
  38. 38.
    Ramayya AV, Hamilton JH, Hwang JK, Ter-Akopian GM (1999) Heavy elements and related new phenomena, Volume I, ed. by Gupta. R.K. and Greiner. W. World Scientific, Singapore, pp 477–506CrossRefGoogle Scholar
  39. 39.
    Wu SC et al (2002) Nucl Instrum Methods Phys Res A 480:776CrossRefGoogle Scholar
  40. 40.
    Hamilton JH et al (1994) J Phys G 20:L85CrossRefGoogle Scholar
  41. 41.
    Hwang. JK, Hwang. JK et al (2001) Nuclei far from stability and astrophysics”, ed. D.N. Poenaru. Kluwer Academic Publishers, Dordrecht, pp 173–184CrossRefGoogle Scholar
  42. 42.
    Ter-Akopian GM et al (1997) Yields of correlated fragment pairs in spontaneous fission of 252Cf. Phys Rev C 55:1146CrossRefGoogle Scholar
  43. 43.
    Goodin C et al (2006) New results for the intensity of bimodal fission in barium channels of the spontaneous fission of 252Cf. Phys Rev C 74:017309CrossRefGoogle Scholar
  44. 44.
    Sandulescu. A, Sandulescu. A et al (1998) Int J Mod Phys E 7:625CrossRefGoogle Scholar
  45. 45.
    Ter-Akopian GM et al (1996) New spontaneous fission mode for 252Cf: indication of hyper deformed 144,145,146Ba at scission. Phys Rev Lett 77:32CrossRefGoogle Scholar
  46. 46.
    Sandulescu A et al (1996) Isotopic yields for the cold fission of 252Cf. Phys Rev C 54:258CrossRefGoogle Scholar
  47. 47.
    Sandulescu A et al (1996) Neutronless 10Be α-accompanied ternary fission of 252Cf. J Phys G: Nucl Part Phys 22:L87CrossRefGoogle Scholar
  48. 48.
    Moller P et al (1995) Nuclear ground-state masses and deformations. At Data Nucl Data Tables 59:185CrossRefGoogle Scholar
  49. 49.
    Radford DC (1995) ESCL8R and LEVIT8R: Software for interactive graphical analysis of HPGe coincidence data sets. Nucl Intstrum Meth Phys Res A 361:297CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • H. C. Manjunatha
    • 1
  • N. Sowmya
    • 1
  • K. N. Sridhar
    • 2
  • L. Seenappa
    • 1
  1. 1.Department of PhysicsGovernment College for WomenKolarIndia
  2. 2.Department of PhysicsGovernment First Grade CollegeKolarIndia

Personalised recommendations