Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 2, pp 887–896 | Cite as

Factors influencing the sorption and migration behavior of uranium in shale

  • Rui Zuo
  • Lina Wang
  • Rongtao Shi
  • Jie Yang
  • Jinsheng Wang
  • Yanguo Teng
Article
  • 129 Downloads

Abstract

The sorption of U(VI) on shale has been experimentally investigated as a function of pH, initial uranium concentration, rock particle size and water–rock ratio. The results showed the sorption equilibrium time was about 10 days, and the adsorption capacity presented a negative relationship with rock particle size and positive correlation with the liquid–solid ratio, also influenced by pH. The sorption process was fitted well with Freundlich isotherm. Experimental column was fully penetrated by tritium at about 230 min with a velocity of 0.13 cm/min while uranium was not penetrated the rock column in 180 days.

Keywords

Uranium Shale Sorption Migration Factor 

Notes

Acknowledgements

This work was jointly supported by the National Natural Science Foundation of China (No. 41402211 and 41672228) and Major Science and Technology Program for Water Pollution Control and Treatment (2014ZX07201-010).

References

  1. 1.
    Aksoyoglu S (1989) Sorption of uranium(VI) on granite. J Radioanal Nucl Chem 134(2):393–403CrossRefGoogle Scholar
  2. 2.
    Bachmaf S, Merkel BJ (2010) Sorption of uranium(VI) at the clay mineral–water interface. Environ Earth Sci 63(5):925–934CrossRefGoogle Scholar
  3. 3.
    Prikryl JD, Jain A, Turner DR, Pabalan RT (2001) Uranium(VI) sorption behavior on silicate mineral mixtures. J Contam Hydrol 47(2001):241–253CrossRefGoogle Scholar
  4. 4.
    Deeder RJ, Nugent M, Lamble GM, Tait CD, Morris DE (2000) Uranyl incorportion into calcite and aragonite: XAFS and luminescence studies. Environ Sci Technol 34:638–644CrossRefGoogle Scholar
  5. 5.
    Fredrickson JK, Zachara JM, Kennedy DW, Duff MC, Gorby YA, Li SM, Krupka KM (2000) Reduction of U(VI) in goethite (α-FeOOH) suspension by a dissimilatory metal-reducing bacterium. Geochim Cosmochim Acta 64(18):3085–3098CrossRefGoogle Scholar
  6. 6.
    Dittrich TM, Reimus PW (2015) Uranium transport in a crushed granodiorite: experiments and reactive transport modeling. J Contam Hydrol 175–176:44–59CrossRefGoogle Scholar
  7. 7.
    Aamrani FZEI, Duro L, Pablo JD, Bruno J (2002) Experimental study and modeling of the sorption of uranium(VI) onto olivine-rock. Appl Geochem 17:399–408CrossRefGoogle Scholar
  8. 8.
    Zou W, Zhao L, Han R (2009) Removal of Uranium(VI) by fixed bed ion-exchange column using natural zeolite coated with manganese oxide. Chinese J Chem Eng 17(4):585–593CrossRefGoogle Scholar
  9. 9.
    Das D, Sureshkumar MK, Koley S, Mithal N, Pillai CGS (2010) Sorption of uranium on magnetite nanoparticles. J Radioanal Nucl Chem 285(3):447–454CrossRefGoogle Scholar
  10. 10.
    Artinger R, Rabung T, Kim JI, Sachs S, Schmeide K, Heise KH, Bernhard G, Nitsche H (2002) Humic colloid-borne migration of uranium in sand columns. J Contam Hydrol 58:1–12CrossRefGoogle Scholar
  11. 11.
    Missana T, García-Gutiérrez M, Maffiotte C (2005) Experimental and modeling study of the uranium(VI) sorption on goethite. J Colloid Interface Sci 260(2003):291–301Google Scholar
  12. 12.
    Ladeira ACQ, Morais CA (2005) Uranium recovery from industrial effluent by ion exchange-column experiments. Miner Eng 18(13–14):1337–1340CrossRefGoogle Scholar
  13. 13.
    Yusan SD, Akyil S (2008) Sorption of uranium (VI) from aqueous solutions by akaganeite. J Hazard Mater 160(2–3):388–395CrossRefGoogle Scholar
  14. 14.
    Niu Z, Fan Q, Wang W, Xu J, Chen L, Wu W (2009) Effect of pH, ionic strength and humic acid on the sorption of uranium(VI) to attapulgite. Appl Radia Isotopes 67(9):1582–1590CrossRefGoogle Scholar
  15. 15.
    Majdan M, Pikus S, Gajowiak A, Gładysz-Płaska A, Krzyżanowska H, Żuk J, Bujacka M (2010) Characterization of uranium(VI) sorption by organobentonite. Appl Surf Sci 256(17):5416–5421CrossRefGoogle Scholar
  16. 16.
    Kim YJ, Brooks SC, Zhang F, Parker JC, Moon JW, Roh Y (2015) Fate and transport of uranium(VI) in weathered saprolite. J Environ Radioact 139:154–162CrossRefGoogle Scholar
  17. 17.
    Gu BH, Wu WM, Ginder-Vogel MA, Yan H, Fields W, Zhou JZ, Fendorf S, Criddle CS, Jardine PM (2005) Bioreduction of uranium in a contaminated soil column. Environ Sci Technol 39(2005):4841–4847CrossRefGoogle Scholar
  18. 18.
    Mibus J, Sachs S, Pfingsten W, Nebelung C, Bernhard G (2007) Migration of uranium(IV)/(VI) in the presence of humic acids in quartz sand: a laboratory column study. J Contam Hydrol 89(3–4):199–217CrossRefGoogle Scholar
  19. 19.
    Barnett MO, Jardine PM, Brooks SC, Selim HM (2000) Adsorption and transport of uranium(VI) in subsurface media. Soil Sci Soc Am J 62:908–917CrossRefGoogle Scholar
  20. 20.
    Zuo R, Teng YG, Wang JS (2009) Sorption and retardation of strotium in fine-particle media from a VLLW disposal site. J Radioanal Nucl Chem 279(3):893–899CrossRefGoogle Scholar
  21. 21.
    Zuo R, Liu L, Jiang XY, Guan X, Teng YG, Ding F, Yang J, Wang JS (2016) Factors influencing 238U(VI) adsorption onto fine soil from a candidate VLLW disposal site in China. Nucl Technol Radiat Prot 3:268–276CrossRefGoogle Scholar
  22. 22.
    Amir J, Vilnis F, Gunnar J, Staffan LT, Inga H, Annelie H (2013) Longitudinal dispersion coefficient: effects of particle-size distribution. Transp Porous Med 99:1–16CrossRefGoogle Scholar
  23. 23.
    GB 6768-86 (2000) Method of analyzing microquantity of uranium in water [S] (in Chinese)Google Scholar
  24. 24.
    EJ/T 550-2000 (1990) Determination of uranium in soil and rock samples by laser-induced fluorometry [S] (in Chinese)Google Scholar
  25. 25.
    GB 12375-90 (1990) Analytical method of tritium in water [S] (in Chinese)Google Scholar
  26. 26.
    Godelitsas A, Misaelides P, Fillippidis A, Charistos D, Anousis I (1995) Uranium sorption from aqueous solutions on sodium from heu-type zeolite crytals. J Radioanal Nucl Chem 208:393–402CrossRefGoogle Scholar
  27. 27.
    Tan L, Wang J, Liu Q, Sun Y, Zhang H, Wang Y (2015) Facile preparation of oxine functionalized magnetic Fe3O4 particles for enhanced uranium(VI) adsorption. Colloid Surf A 466:85–91CrossRefGoogle Scholar
  28. 28.
    Salah C, Abdelhamid M, Mahfoud B, Abderahmane A (2016) Kinetics and isotherms for uranium(VI) adsorption from aqueous solutions by goethite. Am J Chem Mater Sci 3(2):6–12Google Scholar
  29. 29.
    Xie SB, Zhang C, Zhou XH, Yang J, Zhang XJ, Wang JS (2009) Removal of uranium (VI) from aqueous solution by adsorption of hematite. J Environ Radioact 100(2009):162–166Google Scholar
  30. 30.
    Mellah A, Chegrouche S, Barkat M (2006) The removal of uranium(VI) from aqueous solutions onto activated carbon: kinetic and thermodynamic investigations. J Colloid Interface Sci 296(2006):434–441CrossRefGoogle Scholar
  31. 31.
    Hyun SP, Cho YH, Kim SJ (2001) Sorption mechanism of U(VI) on a reference montmorillonite: binding to the internal and external surface. J Radioanal Nucl Chem 250(1):55–62CrossRefGoogle Scholar
  32. 32.
    Wazne M, Korfiatis GP, Meng XG (2003) Carbonate effects on hexavalent uranium adsorption by iron oxyhydroxide. Environ Sci Technol 37:3619–3624CrossRefGoogle Scholar
  33. 33.
    Arnold T, Zorn T, Bernhard G, Nitsche H (1998) Sorption of uranium(VI) onto phyllite. Chem Geol 151:129–141CrossRefGoogle Scholar
  34. 34.
    Keum DK, Choi BJ, Baik MH, Hahn PS (2002) Uranium(VI) adsorption and transport in crushed granite. Environ Eng Res 2:103–111Google Scholar
  35. 35.
    Brian ED, Mark RM (2006) Modeling cadmium adsorption using the langmuir and freundlich isotherm experssions. Sep Sci Technol 28:13–14Google Scholar
  36. 36.
    Ho YS (2005) Isotherm for the sorption of lead onto peat:comparison of linear and non-linear methods. Pol J Environ Stud 15(1):81–86Google Scholar
  37. 37.
    Sharp JO, Lezama-Pacheco JS, Schofield EJ, Junier P, Ulrich KU, Chinni S (2011) Uranium speciation and stability after reductive immobilization in aquifer sediments. Geochim Cosmochim AC 75(21):6497–6510CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Rui Zuo
    • 1
    • 2
  • Lina Wang
    • 1
    • 2
  • Rongtao Shi
    • 1
    • 2
  • Jie Yang
    • 1
    • 2
  • Jinsheng Wang
    • 1
    • 2
  • Yanguo Teng
    • 1
    • 2
  1. 1.College of Water SciencesBeijing Normal UniversityBeijingChina
  2. 2.Engineering Research Center of Groundwater Pollution Control and RemediationMinistry of EducationBeijingChina

Personalised recommendations