Skip to main content
Log in

Thermal behavior and kinetic modeling of (NH4)4UO2(CO3)3 decomposition under non-isothermal conditions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The thermal behavior and kinetic analysis of ammonium uranyl carbonate decomposition has been studied in inert gas, O2, and 90%Ar–10%H2 atmospheres under non-isothermal conditions. The results showed a dependence on specific surface area with the decomposition temperature of ammonium uranyl tri-carbonate (AUC). Specific surface area increases and reaches a maximum between 300 and 400 °C and decreases at T > 400 °C. The reaction paths of AUC decomposition under the three atmospheres were proposed. The integral methods Flynn–Wall–Ozawa (FWO) and Kissinger–Akahira–Sunose (KAS) were used for the kinetic analysis. The activation energy averages are 58.01 and 56.19 kJ/mol by KAS and FWO methods, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Slycke J, Mittemeijer EJ, Somers MAJ (2015) Thermodynamics and kinetics of gas and gas–solid reactions. In: Mittemeijer EJ, Somers MAJ (eds) Thermochemical surface engineering of steels. Elsevier-Woodhead, Amsterdam, pp 3–111

    Chapter  Google Scholar 

  2. Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Suñol JJ (2014) ICTAC kinetics committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta 590:1–23

    Article  CAS  Google Scholar 

  3. Khawam A, Flanagan DR (2006) Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B 110:17315–17328

    Article  CAS  Google Scholar 

  4. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19

    Article  CAS  Google Scholar 

  5. Flynn JH (1983) The iso-conversional method for determination of energy ofactivation at constant heating rates corrections for the Doyle approximation. J Therm Anal 27:95–102

    Article  CAS  Google Scholar 

  6. Draper LA, Sveum KL (1970) The analysis of thermal data. Thermochim Acta 1:345–365

    Article  CAS  Google Scholar 

  7. Klemm U, Sobek D (1989) Influence of admixing of lubricants on compressibility and compactibility of uranium dioxide powders. Powder Technol 57(2):135–142

    Article  CAS  Google Scholar 

  8. Wang Y, Chen Q, Shen X (2016) Preparation of low-temperature sintered O2 nanomaterials by radiolytic reduction of ammonium uranyl tricarbonate. J Nucl Mater 479:162–166

    Article  CAS  Google Scholar 

  9. Ganguly C (2001) Nuclear reactor fuel fabrication (including quality control), 2nd edn. Encyclopedia of Materials: Science and Technology, pp 1–15

  10. Marajofsky A, Perez L, Celora J (1991) On the dependence of characteristics of powders on the AUC process parameter. J Nucl Mater 178:43–151

    Article  Google Scholar 

  11. Pijolat M, Brun C, Valdivieso F, Soustelle M (1997) Reduction of uranium oxide U3O8 to UO2 by hydrogen. Solid State Ionics 101–103:931–935

    Article  Google Scholar 

  12. Tel H, Eral M (1996) Investigation of production conditions and powder properties of AUC. J Nucl Mater 231:165–169

    Article  CAS  Google Scholar 

  13. Dahale ND, Chawla KL, Jayadevan NC, Venugopal V (1997) X-ray, thermal and infrared spectroscopic studies on lithium and sodium oxalate hydrates. Thermochim Acta 293:163–166

    Article  CAS  Google Scholar 

  14. Li Y, Penga J, Liua B, Li W, Huang D, Zhang L (2011) Prediction model of ammonium uranyl carbonate calcination by microwave heating using incremental improved back-propagation neural network. Nucl Eng Des 241:1909–1913

    Article  CAS  Google Scholar 

  15. Dollimore D, Clough P (1985) A study of the thermal decomposition of uranyl acetate using infra-red spectroscopic techniques. Thermochim Acta 85:43–46

    Article  CAS  Google Scholar 

  16. Bachmann HG, Seibold K, Dokuzoguz HZ, Muller HM (1975) X-ray powder diffraction and some thermodynamic data for (NH4)4[UO2(CO3)3]. J Inorg Nucl Chem 37:735–737

    Article  CAS  Google Scholar 

  17. Haaldahl L, Sorensen T (1979) Thermal analysis of the decomposition of ammonium uranyl carbonate (AUC) in different atmospheres. Thermochim Acta 29:253–259

    Article  Google Scholar 

  18. Haaldahl L, Nygren M (1984) TG, DSC, X ray and electron diffraction studies of intermediate phases in the reduction of ammonium uranyl carbonate to O2. Thermochim Acta 72:213–218

    Article  Google Scholar 

  19. Haaldahl L (1984) In situ studies of the decomposition of ammonium uranyl carbonate in an electron microscope. J Nucl Mater 126:170–176

    Article  Google Scholar 

  20. Baran V, Voseček V (1987) Spontaneous isothermal decomposition of the uranyl carbonate complex (NH4)4[UO2(CO3)3] at room temperature: part II. Infrared spectroscopy and X-ray analysis. Thermochim Acta 122(2):261–276

    Article  CAS  Google Scholar 

  21. Bing-Guo L, Jin-Hui P, Srinivasakannan C, Li-Bo Z, Jin-Ming H, Sheng-Hui G, Dong-Cheng K (2015) Preparation of U3O8 by calcination from ammonium uranyl carbonate in microwave fields: process optimization. Ann Nucl Energy 85:879–884

    Article  Google Scholar 

  22. Wang YM, Chen QD, Shen XH (2017) One-step synthesis of hollow UO2 nanospheres via radiolytic reduction of ammonium uranyl tricarbonate. Chin Chem Lett 28:3–18

    Google Scholar 

  23. Haaldahl L, Nygren M (1985) A study of the composition of the amorphous phase formed during decomposition of ammonium uranyl carbonate in various atmospheres. Thermochim Acta 95:389–994

    Article  Google Scholar 

  24. Haaldahl L, Nygren M (1986) Thermal analysis studies of the reactions occurring during the decomposition of ammonium uranyl carbonate in different atmospheres. J Nucl Mater 138:99–106

    Article  Google Scholar 

  25. Asadi Z, Ranjkesh Shorkaei M (2013) Synthesis, X-ray crystallography, thermal studies, spectroscopic and electrochemistry investigations of uranyl Schiff base complexes. Spectrochim Acta Part A 105:344–351

    Article  CAS  Google Scholar 

  26. Kianfar AH, Dostani M (2011) Synthesis, spectroscopy, and thermal study of uranyl unsymmetrical Schiff base complexes. Spectrochim Acta Part A 82:69–73

    Article  CAS  Google Scholar 

  27. Savchenkov AV, Peresypkina EV, Pushkin DV, Virovets AV, Serezhkina LB, Serezhkin VN (2014) Structural features of two polymorphs of ammonium uranyl crotonate. J Mol Struct 1074:583–588

    Article  CAS  Google Scholar 

  28. Kim KW, Lee KY, Chung DY, Lee EH, Moon JK, Shin DW (2012) Evaluation of the stability of uranyl peroxo-carbonato complex ions in carbonate media at different temperatures. J Hazard Mater 233–234:213–218

    Article  Google Scholar 

  29. Notz KJ, Haas PA (1989) Properties and thermal decomposition of the double salts of uranyl nitrate-ammonium nitrate. Thermochim Acta 155:283–295

    Article  CAS  Google Scholar 

  30. de Aquino AR, Isolani PC, Zukerman-Schpector J, Zinner LB, Vicentini G (2001) Uranyl nitrate complexes with lactams. J Alloy Compd 323–324:18–21

    Article  Google Scholar 

  31. Alvarenga MG, Zinner LB, Fantin CA, Matos JR, Vicentini G (2004) Preparation and characterization of uranyl complexes with three isomeric methyl-pyridine-N-oxide ligands. J Alloy Compd 374:258–260

    Article  CAS  Google Scholar 

  32. Sreenivasan NL, Srinivasan TG, Vasudeva Rao PR (1994) A spectrophotometric method for the determination of the oxygen to metal ratio in U3O8. Radioanal Nucl Chem Lett 188(6):463–470

    Article  CAS  Google Scholar 

  33. Hung NT, Thuan LB, Khoai DV, Lee JY, Kumar JR (2016) Brandon mathematical model describing the effect of calcination and reduction parameters on specific surface area of UO2 powders. J Nucl Mater 474:150–154

    Article  Google Scholar 

  34. Girgis BS, Rofail NH (1992) Decomposition-reduction stages of ammonium uranyl carbonates under different atmospheres. Thermochim Acta 196:105–115

    Article  CAS  Google Scholar 

  35. Kim EH, Park JJ, Chang JH, Choi CS, Kim SD (1994) Thermal decomposition kinetics of ammonium uranyl carbonate. J Nucl Mater 209:294–300

    Article  CAS  Google Scholar 

  36. Qingren GE, Shifang K (1987) Study of AUC thermal decomposition kinetics in kinetics in nitrogen by a non-isothermal method. Thermochim Acta 116:71–77

    Article  Google Scholar 

  37. Kim BH, Lee YB, Prelas MA, Ghosh TK (2012) Thermal and X-ray diffraction analysis studiesduring the decomposition of ammonium uranyl nitrate. J Radioanal Nucl Chem 292:1075–1083

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Korichi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korichi, S., Mernache, F., Benaouicha, F. et al. Thermal behavior and kinetic modeling of (NH4)4UO2(CO3)3 decomposition under non-isothermal conditions. J Radioanal Nucl Chem 314, 923–934 (2017). https://doi.org/10.1007/s10967-017-5444-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5444-2

Keywords

Navigation