Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 2, pp 879–886 | Cite as

Analysis of 63Ni in radwastes by extraction chromatography and radiometric techniques

  • Feng-Yun J. Huang
  • Te-Yen Su
  • Tsuey-Lin Tsai
  • Jiunn-Hsing Chao


In this study, a practical method for the determination of 63Ni in radwaste samples was established. The results showed that the condition of duplicate elution with the Ni-resin column and the presence of the carrier Mn can effectively remove unwanted interfering radionuclides with decontamination factors of >104 for 60Co. The highest activity of 63Ni in radwaste samples was determined to be 2.86 ± 0.04 Bq/g, whereas the minimum detectable amount was approximately 0.04 Bq/g. The established separation technique can be used for the practical determination of 63Ni in radwastes and for the classification of radwastes.


63Ni Ni-resin LSC HPGe detector Radwaste 



The authors sincerely thank Ms. Meng-Chen Lee and Hsueh-Ping Lee from Nuclear Science & Technology Development Center, National Tsing Hua University, Taiwan, for data collection and technical support on LSC and γ-ray measurement, respectively. We also thank our co-workers in the Chemistry Division, Institute of Nuclear Energy Research, Longtan, Taiwan, for data collection on ICP-OES.


  1. 1.
    Numajiri M, Oki Y, Suzuki T, Miura T, Taira M, Kanda Y, Kondo K (1994) Estimation of Ni-63 in steel and copper activated at high-energy accelerator facilities. Appl Radiat Isot 45(4):509–514CrossRefGoogle Scholar
  2. 2.
    Thierfeldt S, Deckert A (1995) Radionuclides difficult to measure in waste packages. Final report. IAEA, INISGoogle Scholar
  3. 3.
    Kaye JH, Strebin RS, Nevissi AE (1994) Measurement of Ni-63 in highly radioactive Hanford waste by liquid scintillation-counting. J Radioanal Nucl Chem 180(2):197–200CrossRefGoogle Scholar
  4. 4.
    Lindgren M, Pettersson M, Wiborgh M (2007) Correlation factors for 14C, 36Cl, 59Ni, 63Ni, 93Mo, 99Tc, 129I and 135Cs, SFR 1 SAR-08. SKB, StockholmGoogle Scholar
  5. 5.
    NRC (1982) Licensing requirements for land disposal of radioactive waste. Final rule, 10 CFR 61, Federal Register 47Google Scholar
  6. 6.
    Hou XL, Roos P (2008) Critical comparison of radiometric and mass spectrometric methods for the determination of radionuclides in environmental, biological and nuclear waste samples. Anal Chim Acta 608(2):105–139CrossRefGoogle Scholar
  7. 7.
    Harvey BR, Sutton GA (1970) Liquid scintillation counting of nickel-63. Int J Appl Radiat Isot 21:519–523CrossRefGoogle Scholar
  8. 8.
    Tschugaeff L (1905) Ueber ein neues, empfindliches reagens auf nickel. Ber Dtsch Chem Ges 38:2520–2522CrossRefGoogle Scholar
  9. 9.
    Lo JM, Cheng BJ, Tseng CL, Lee JD (1993) Preconcentration of Ni-63 in sea-water for liquid scintillation-counting. Anal Chim Acta 281(2):429–433CrossRefGoogle Scholar
  10. 10.
    Kojima S, Furukawa M (1985) Liquid scintillation-counting of low activity Ni-63. J Radioanal Nucl Chem 95(5):323–329CrossRefGoogle Scholar
  11. 11.
    Williams DF, Okelley GD, Knauer JB (1994) Flowsheet for the recovery and purification of Ni-63. Radiochim Acta 64(1):49–55CrossRefGoogle Scholar
  12. 12.
    Hou XL, Ostergaard LF, Nielsen SP (2005) Determination of 63Ni and 55Fe in nuclear waste samples using radiochemical separation and liquid scintillation counting. Anal Chim Acta 535(1–2):297–307CrossRefGoogle Scholar
  13. 13.
    Lee CH, Suh MY, Jee KY, Kim WH (2007) Sequential separation of 99Tc, 94Nb, 55Fe, 90Sr and 59/63Ni from radioactive wastes. J Radioanal Nucl Chem 272(1):187–194CrossRefGoogle Scholar
  14. 14.
    Eichrom Technologies L (2014) Analytical procedure, nickel-63/59 in water vol NIW01, 1.3Google Scholar
  15. 15.
    Eichrom Technologies I (2003) Analytical procedure, nickel 63/59 in water vol NIW01, 1.2Google Scholar
  16. 16.
    Currie LA (1968) Limits for qualitative detection and quantitative determination. Anal Chem 40:586–593CrossRefGoogle Scholar
  17. 17.
    Warwick PE, Croudace IW (2006) Isolation and quantification of 55Fe and 63Ni in reactor effluents using extraction chromatography and liquid scintillation analysis. Anal Chim Acta 567(2):277–285CrossRefGoogle Scholar
  18. 18.
    Reis AS, Junior Temba ESC (2012) Radiochemical separation of nickel for 59Ni and 63Ni activity determination in nuclear waste samples. In: Chang SH (ed) Nuclear Power Plants. InTech, RijekaGoogle Scholar
  19. 19.
    Robertson DE, Thomas CW, Pratt SL, Lepel EA, Thomas VW (2000) Low-level radioactive waste classification, characterization, and assessment: waste streams and neutron-activated metals. Nuclear Regulatory Commission, Washington, DCGoogle Scholar
  20. 20.
    Devidales JLM, Garciamartinez O, Vila E, Rojas RM, Torralvo MJ (1993) Low-temperature preparation of manganese cobaltite spinels [MnxCo3−XO4(0-less-than-or-equal-to-X-less-than-or-equal-to-1)]. Mater Res Bull 28(11):1135–1143CrossRefGoogle Scholar
  21. 21.
    Scheuerer C, Schupfner R, Schuttelkopf H (1995) A very sensitive LSC procedure to determine Ni-63 in environmental-samples, steel and concrete. J Radioanal Nucl Chem 193(1):127–131CrossRefGoogle Scholar
  22. 22.
    Rosskopfova O, Galambos M, Rajec P (2011) Determination of Ni-63 in the low level solid radioactive waste. J Radioanal Nucl Chem 289(1):251–256CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Feng-Yun J. Huang
    • 1
  • Te-Yen Su
    • 2
  • Tsuey-Lin Tsai
    • 2
  • Jiunn-Hsing Chao
    • 1
  1. 1.Nuclear Science and Technology Development CenterNational Tsing Hua UniversityHsinchuTaiwan
  2. 2.Chemistry DivisionInstitute of Nuclear Energy ResearchLongtanTaiwan

Personalised recommendations