Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 2, pp 803–812 | Cite as

A fast-neutron coincidence collar using liquid scintillators for fresh fuel verification

  • Jonathan S. Beaumont
  • Tae Hoon Lee
  • Mikhail Mayorov
  • Carlo Tintori
  • Francesco Rogo
  • Bruno Angelucci
  • Matteo Corbo
Article
  • 86 Downloads

Abstract

The IAEA has developed a liquid scintillator-based system for the non-destructive assay of 235U in fresh fuel assemblies. The fast neutron coincidence collar (FNCL) addresses current limitations in existing neutron coincidence counting techniques when measuring fuel containing burnable neutron poisons. Detection of fast neutrons rather than thermal neutrons allows the minimisation of measurement time and biases (due to effects of burnable poisons). The FNCL hardware, software and instrument optimisation are discussed. Experimental results from measurements of mock-up uranium fuel assemblies at the institute for transuranium elements, Karlsruhe, Germany with varying 235U enrichment and burnable neutron poison content are presented.

Keywords

Safeguards Non-destructive assay Uranium assay Neutron coincidence counting Fast-neutron detection Burnable neutron poisons 

Notes

Acknowledgements

This work could not be accomplished without the following support: The Netherlands Support Programme for contributing neutron detectors. The German Support Programme for provision of the mock-up fuel assembly for measurement at the Institute for Transuranium Elements, Germany. Dr. Ludwig Holzleitner (Institute for Transuranium Elements, Germany) for expertise in handling and configuration of the fuel assembly.

References

  1. 1.
    Menlove HO (1981) Description and performance characteristics for the neutron coincidence collar for the verification of reactor fuel assemblies. Los Alamos National Lab., NM (USA)CrossRefGoogle Scholar
  2. 2.
    Henriksen PW, Menlove HO, Stewart JE, Qiao SZ, Wenz TR, Verrecchia GPD (1990) Neutron collar calibration and evaluation for assay of LWR fuel assemblies containing burnable neutron absorbers. Los Alamos National Lab., NM (USA)CrossRefGoogle Scholar
  3. 3.
    Tagziria H, Bagi J, Peerani P, Belian A (2012) Calibration, characterisation and Monte Carlo modelling of a fast-UNCL. Nucl Instrum Methods Phys Res Sect A 687:82–91CrossRefGoogle Scholar
  4. 4.
    Evans LG, Swinhoe MT, Menlove HO, Schwalbach P, Baere PD, Browne MC (2013) A new fast neutron collar for safeguards inspection measurements of fresh low enriched uranium fuel assemblies containing burnable poison rods. Nucl Instrum Methods Phys Res Sect A 729:740–746CrossRefGoogle Scholar
  5. 5.
    Cester D, Nebbia G, Stevanato L, Pino F, Viesti G (2014) Experimental tests of the new plastic scintillator with pulse shape discrimination capabilities EJ-299-33. Nucl Instrum Methods Phys Res, Sect A 735:202–206CrossRefGoogle Scholar
  6. 6.
    Chichester DL, Johnson JT, Seabury EH (2012) Fast-neutron spectrometry using a 3He ionization chamber and digital pulse shape analysis. Appl Radiat Isot 70:1457–1463CrossRefGoogle Scholar
  7. 7.
    Chandra R, Davatz G, Friederich H, Gendotti U, Murer D (2012) Fast neutron detection with pressurized 4He scintillation detectors. J Instrum 7:C03035CrossRefGoogle Scholar
  8. 8.
    Sosa CS, Flaska M, Pozzi SA (2016) Comparison of analog and digital pulse-shape-discrimination systems. Nucl Instrum Methods Phys Res, Sect A 826:72–79CrossRefGoogle Scholar
  9. 9.
    Lavietes A, Plenteda R, Mascarenhas N, Cronholm LM, Aspinall M, Joyce M, Tomanin A, Peerani P (2013) Development of a liquid scintillator-based active interrogation system for LEU fuel assemblies. In: 2013 3rd international conference on advancements in nuclear instrumentation, measurement methods and their applications (ANIMMA)Google Scholar
  10. 10.
    Tomanin A, Peerani P, Tagziria H, Maenhout G, Schillebeeckx P, Paepen J, Lavietes A, Plenteda R, Mascarenhas N, Cronholm LM (2013) Design of a liquid scintillator-based prototype neutron coincidence counter for nuclear safeguards. ESARDA BULLETIN 49:28–36Google Scholar
  11. 11.
    Tae Hoon Lee ATJB (2016) Liquid scintillator-based fast neutron coincidence counter for fresh nuclear fuel measurements. In: Advances in nuclear nonproliferation technology and policy conference, Santa Fe, 2016Google Scholar
  12. 12.
    Eljen technology, “NEUTRON/GAMMA PSD EJ-301, EJ-309,” Eljen Technology. http://www.eljentechnology.com/products/liquid-scintillators/ej-301-ej-309. Accessed 25 Apr 2017
  13. 13.
    Tomanin A, Paepen J, Schillebeeckx P, Wynants R, Nolte R, Lavietes A (2014) Characterization of a cubic EJ-309 liquid scintillator detector. Nucl Instrum Methods Phys Res Sect A 756:45–54CrossRefGoogle Scholar
  14. 14.
    Mckinney G, Durkee JS, Hendricks JS, James MR, Pelowitz DB (2011) MCNPX users manual, version 2.7. 0Google Scholar
  15. 15.
    Padovani E, Pozzi SA, Clarke SD, Miller EC (2012) MCNPX-PoliMi user’s manual, C00791 MNYCP, radiation safety information computational center, oak ridge national laboratory, vol 1Google Scholar
  16. 16.
    Tomanin A, Peerani P, Maenhout G (2013) The SimPLiS code: a simulation post-processor for liquid scintillatorsGoogle Scholar
  17. 17.
    Chadwick MB, Herman M, Obložinský P, Dunn ME, Danon Y, Kahler AC, Smith DL, Pritychenko B, Arbanas G, Arcilla R, Brewer R, Brown DA, Capote R, Carlson AD, Cho YS, Derrien H, Guber K, Hale GM, Hoblit S, Holloway S, Johnson TD, Kawano T, Kiedrowski BC, Kim H, Kunieda S, Larson NM, Leal L, Lestone JP, Little RC, McCutchan EA, MacFarlane RE, MacInnes M, Mattoon CM, McKnight RD, Mughabghab SF, Nobre GPA, Palmiotti G, Palumbo A, Pigni MT, Pronyaev VG, Sayer RO, Sonzogni AA, Summers NC, Talou P, Thompson IJ, Trkov A, Vogt RL, van der Marck SC, Wallner A, White MC, Wiarda D, Young PG (2011) ENDF/B-VII.1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data. Nucl Data Sheets 112:2887–2996CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Jonathan S. Beaumont
    • 1
  • Tae Hoon Lee
    • 1
  • Mikhail Mayorov
    • 1
  • Carlo Tintori
    • 2
  • Francesco Rogo
    • 2
  • Bruno Angelucci
    • 2
  • Matteo Corbo
    • 2
  1. 1.International Atomic Energy AgencyViennaAustria
  2. 2.CAEN S.p.AViareggioItaly

Personalised recommendations