Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 2, pp 681–687 | Cite as

Determination of low-level tritium concentrations in surface water and precipitation in the Czech Republic

  • Diana Marešová
  • Eduard Hanslík
  • Eva Juranová
  • Barbora Sedlářová
Article

Abstract

Past tests of nuclear weapons in the atmosphere, nuclear energy facilities and tritium of natural origin are main sources of tritium in the environment. Thanks to its presence in environment and its favourable properties, tritium is used as a radiotracer. Since stopping of atmospheric nuclear tests, tritium in precipitation has been decreasing towards natural levels below 1 Bq l−1 and precise analyses of low level tritium activities are necessary. This paper focuses on tritium development at sites not influenced by any technogenic release of tritium in Elbe River basin (Bohemia) in the Czech Republic using liquid scintillation measurement with electrolytic enrichment.

Keywords

Tritium Precipitation Surface water LSC Electrolytic enrichment 

References

  1. 1.
    Lucas LL, Unterweger MP (2000) Comprehensive review and critical evaluation of the half-time of tritium. J Res Natl Inst Stand Technol 105:541–549CrossRefGoogle Scholar
  2. 2.
    UNSCEAR (2000) Effects of ionizing radiation: 2000 report to the general assembly, with scientific annexes, vol. ii: Effects. United Nations, New YorkGoogle Scholar
  3. 3.
    Morgenstern U, Stewart MK, Stenger R (2010) Dating of streamwater using tritium in post nuclear bomb pulse world: continuous variation of mean transit time with streamflow. Hydrol Earth Syst Sci 14(11):2289–2301CrossRefGoogle Scholar
  4. 4.
    Tadros CV, Hughes CE, Crawford J, Hollins SE, Chisari R (2014) Tritium in Australian precipitation: a 50 year record. J of Hydrol 513:262–273CrossRefGoogle Scholar
  5. 5.
    Pujol L, Sanchez-Cabeza J (2000) Use of tritium to predict soluble pollutants transport in Ebro river waters (Spain). Environ Pollut 108(2):257–269CrossRefGoogle Scholar
  6. 6.
    Cox T, Rutherford J, Kerr SC, Smeaton D, Palliser C (2013) An integrated model for simulating nitrogen trading in an agricultural catchment with complex hydrogeology. J Environ Manag 127:268–277CrossRefGoogle Scholar
  7. 7.
    Gorur FK, Genc E (2012) The tritium, deuterium and oxygen-18 isotope levels determination in various waters in Rize and Trabzon. Desalin Water Treat 44(1–3):215–222CrossRefGoogle Scholar
  8. 8.
    Chau ND, Dulinski M, Jodlowski P, Nowak J, Rozanski K, Sleziak M, Wachniev P (2011) Natural radioactivity in groundwater: a review. Isot Environ Health Stud 47:415–437CrossRefGoogle Scholar
  9. 9.
    Harms PA, Visser A, Moran JE, Esser BK (2016) J Hydrol 534:63–72CrossRefGoogle Scholar
  10. 10.
    Global Network of Isotopes in Precipitation. The GNIP database. http://www-naweb.iaea.org/napc/ih/IHS_resources_gnip.html. Accessed 29 May 2017
  11. 11.
    Global Network of Isotopes in Rivers. The GNIR database. http://www-naweb.iaea.org/napc/ih/IHS_resources_gnir.html. Accessed 29 May 2017
  12. 12.
    Hanslík EJ, Jedináková-Křížová V, Brtvová M, Ivanovová D, Kalinová E, Sedlářová B, Svobodová J, Šimonek P, Tomášková H (2002) Temelín nuclear power plant, South Bohemia—Reference level of hydrosphere, prediction of impact, results from pre-operation period. Radioprotection, vol. 37, C1, 2002, Proceeding of the International Congress ECORAD 2001, Aix-en-ProvenceGoogle Scholar
  13. 13.
    Czech Office for Standards, Metrology and Testing (2016) CSN EN ISO 9698 water quality—determination of tritium activity concentration—liquid scintillation counting methodGoogle Scholar
  14. 14.
    Czech Office for Standards, M., Testing. (2013) CSN 75 7600. Water quality—determination of radionuclides—general provisionsGoogle Scholar
  15. 15.
    Tritium Laboratory, AGH University of Science and Technology (2010) Measurement of tritium activity in water samples using electrolytic enrichment and liquid scintillation spectrometry. Version P-11-2010, KrakowGoogle Scholar
  16. 16.
    Pequeno M, Talavera MG, López R, Deban L, García EL, Pardo R, Pena V (2005) Analysis of the background levels of tritium precipitation in valladolid (Spain) In: Méndez-Vilas A (ed) Recent advances in multidisciplinary applied physics, Proceedings of the First International Meeting on Applied Physics, Elsevier, London, 2003Google Scholar
  17. 17.
    Smith JT, Beresford NA (2005) Chernobyl: catastrophe and consequences. Springer, New YorkGoogle Scholar
  18. 18.
    Momoshima N, Hayashi Y (2001) Meteorologically induced seasonal variation of tritium concentration in rain at Fukuoka, Japan. In: Möbius S, Noakes JE, Schönhofer F (eds) Advances in Liquid scintillation spectrometry 2001. RADIOCARBON, ArizonaGoogle Scholar
  19. 19.
    Rozanski K, Groning M (2004) Tritium assay in water samples using electrolytic enrichment and liquid scintillation spectrometry. Quantifying uncertainty in nuclear analytical measurements. IAEA-TECDOC-1401, IAEA, ViennaGoogle Scholar
  20. 20.
    Osman AA, Bister S, Riebe B, Daraoui A, Vockenhuber C, Wacker L, Walther C (2016) Radioecological investigation of 3H, 14C, and 129I in natural waters from Fuhrberger Feld catchment, Northern Germany. J Environ Radioact 165:243–252CrossRefGoogle Scholar
  21. 21.
    Zahn A, Barth V, Pfeilsticker K, Platt U (1998) Deuterium, oxygen-18, and tritium as a tracers for water vapour transport in the lower stratosphere and tropopause region. J Atmos Chem 30(1):25–47CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Diana Marešová
    • 1
  • Eduard Hanslík
    • 1
  • Eva Juranová
    • 1
    • 2
  • Barbora Sedlářová
    • 1
  1. 1.Department of RadioecologyT. G. Masaryk Water Research Institute, p.r.i.PragueCzech Republic
  2. 2.Faculty of Science, Institute for Environmental StudiesCharles UniversityPragueCzech Republic

Personalised recommendations