Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 2, pp 611–615 | Cite as

Synthesis of ZrO2 nanoparticles for liquid scintillators used in the detection of neutrinoless double beta decay

  • Susumu Takigawa
  • Masanori Koshimizu
  • Takio Noguchi
  • Tsutomu Aida
  • Seiichi Takami
  • Tadafumi Adschiri
  • Yutaka Fujimoto
  • Akira Yoko
  • Gimyeong Seong
  • Takaaki Tomai
  • Keisuke Asai
Article
  • 230 Downloads

Abstract

We synthesized liquid scintillators incorporating ZrO2 nanoparticles for application in neutrinoless double beta decay experiments. ZrO2 nanoparticles of less than 10 nm in size were synthesized with sub- and supercritical hydrothermal methods. The Zr concentrations in the liquid scintillators were determined to be up to 1.4 wt% with inductively coupled plasma analysis, and the liquid scintillators were transparent to scintillation. These results indicate that these methods are applicable for the preparation of liquid scintillators for neutrinoless double beta decay experiments.

Keywords

Liquid scintillator Neutrinoless double beta decay Nanoparticles ZrO2 Supercritical hydrothermal synthesis 

Notes

Acknowledgements

This work was supported by the Sumitomo Foundation.

References

  1. 1.
    Vergados JD, Ejiri H, Šimkovic F (2016) Neutrinoless double beta decay and neutrino mass. Int J Mod Phys E 25:1630007CrossRefGoogle Scholar
  2. 2.
    Dell’Oro S, Marcocci S, Viel M, Francesco Vissani F (2016) Neutrinoless double beta decay: 2015 Review. Adv High Energy Phys 2016:2162659Google Scholar
  3. 3.
    Buck C, Yeh M (2016) Metal-loaded organic scintillators for neutrino physics. J Phys G 43:093001CrossRefGoogle Scholar
  4. 4.
    Arita T, Yoo J, Ueda Y, Adschiri T (2012) Highly concentrated colloidal dispersion of decanoic acid self-assembled monolayer-protected ceo2 nanoparticles dispersed to a concentration of up to 77 wt% in an organic solvent. Chem Lett 41:1235–1237CrossRefGoogle Scholar
  5. 5.
    Byrappa K, Adschiri T (2007) hydrothermal technology for nanotechnology. Prog Cryst Growth Ch 53:117–166CrossRefGoogle Scholar
  6. 6.
    Joo J, Yu T, Kim YW, Park HM, Wu F, Zhang JZ, Hyeon T (2003) Multigram scale synthesis and characterization of monodisperse tetragonal zirconia nanocrystals. J Am Chem Soc 125:6553–6557CrossRefGoogle Scholar
  7. 7.
    Stichert W, Schüth F (1998) Influence of crystallite size on the properties of zirconia. Chem Mater 10:2020–2026CrossRefGoogle Scholar
  8. 8.
    Xia B, Lenggoro IW, Okuyama K (2001) Novel route to nanoparticle synthesis by salt-assisted aerosol decomposition. Adv Mater 13:1579–1582CrossRefGoogle Scholar
  9. 9.
    Woudenberg FCM, Sager WFC, Sibelt NGM, Verweij H (2001) Dense nanostructured t-ZrO2 coatings at low temperatures via modified emulsion precipitation. Adv Mater 13:514–516CrossRefGoogle Scholar
  10. 10.
    Hakuta Y, Ohashi T, Hayashi H, Arai K (2004) Hydrothermal synthesis of zirconia nanocrystals in supercritical water. J Mater Res 19:2230–2234CrossRefGoogle Scholar
  11. 11.
    Adschiri T, Kanazawa K, Arai K (1992) Rapid and continuous hydrothermal crystallization of metal-oxide particles in supercritical water. J Am Ceram Soc 75:1019–1022CrossRefGoogle Scholar
  12. 12.
    Adschiri T (2007) Supercritical hydrothermal synthesis of organic-inorganic hybrid nanoparticles. Chem Lett 36:1188–1193CrossRefGoogle Scholar
  13. 13.
    Taguchi M, Takami S, Adschiri T, Nakane T, Sato K, Naka T (2012) Simple and rapid synthesis of ZrO2 nanoparticles from Zr(OEt)4 and Zr(OH)4 using a hydrothermal method. CrystEngComm 14:2117–2123CrossRefGoogle Scholar
  14. 14.
    Taguchi M, Takami S, Adschiri T, Nakane T, Sato K, Naka T (2012) Synthesis of surface-modified monoclinic ZrO2 nanoparticles using supercritical water. CrystEngComm 14:2132–2138CrossRefGoogle Scholar
  15. 15.
    Zhang J, Ohara S, Umetsu M, Naka T, Hatakeyama Y, Adschiri T (2007) Colloidal ceria nanocrystals: a tailor-made crystal morphology in supercritical water. Adv Mater 19:203–206CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Susumu Takigawa
    • 1
  • Masanori Koshimizu
    • 1
  • Takio Noguchi
    • 2
  • Tsutomu Aida
    • 2
  • Seiichi Takami
    • 3
  • Tadafumi Adschiri
    • 2
    • 3
    • 4
  • Yutaka Fujimoto
    • 1
  • Akira Yoko
    • 4
  • Gimyeong Seong
    • 2
  • Takaaki Tomai
    • 3
  • Keisuke Asai
    • 1
  1. 1.Department of Applied Chemistry, Graduate School of EngineeringTohoku UniversitySendaiJapan
  2. 2.New Industry Creation Hatchery CenterTohoku UniversitySendaiJapan
  3. 3.Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversitySendaiJapan
  4. 4.WPI Advanced Institute for Materials ResearchTohoku UniversitySendaiJapan

Personalised recommendations