Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 2, pp 709–713 | Cite as

Comparison of two methods for 14C analysis from essential oils using LSC

  • Irina Vagner
  • Carmen Varlam
  • Ionut Faurescu
  • Denisa Faurescu
  • Felicia Bucura
Article
  • 87 Downloads

Abstract

Natural essential oil sample obtained from basil (Ocinum basilicum), and ethanol sample obtained from wine were measured to determine 14C specific activity, using two different sample preparation methods, and liquid scintillation counting method. The paper describes the use of two preparation methods, direct measurement method and CO2 absorption method, and the results obtained for this comparative study. Depending on carbon content of the sample and bubbling time, different correction factors of carbon mass trapped in liquid scintillation cocktail were established for CO2 absorption method.

Keywords

Radiocarbon Liquid scintillation counting Direct measurement method CO2 absorption method 

Notes

Acknowledgements

This work was performed within the framework of the Experimental Pilot Plant for Tritium and Deuterium Separation (PESTD) from National Institute for Cryogenics and Isotopic Technologies—ICSI Rm. Valcea.

References

  1. 1.
    Institute de Radioprotection et de Surete Nucleaire IRSN, Radionuclide fact sheet—Carbon-14 and the environment. http://www.irsn.fr/EN/Research/publications-documentation/radionuclides-sheets/environment/Pages/carbon14-environment.aspx. Accessed 22 May 2017
  2. 2.
    Kotzer TG, Watson WL (1999) Spatial and temporal distribution of 14C in cellulose in tree rings in Central and Eastern Canada: comparison with long-term atmospheric and environmental data, AECL-12002Google Scholar
  3. 3.
    Shuhang Wu (2017) Variation of atmospheric 14CO2 and its spatial distribution. J Environ Radioact 169–170:116–121Google Scholar
  4. 4.
    Salonen L, Kaihola L, Carter B, Cook GT, Passo CJ (2012) In: L’Annunziata MF (ed.) Handbook of radioactivity analysis, 3rd edn. Elsevier, AmsterdamGoogle Scholar
  5. 5.
    Kristof R, Kozar Logar J (2013) Direct LSC method for measurements of biofuels in fuel. Talanta 111:183–188CrossRefGoogle Scholar
  6. 6.
    Krajcar Bronic I, Baresic J, Horvatincic N, Sironic A (2016) Determination of biogenic component in liquid fuels by the 14C direct LSC method by using quenching properties of modern liquids for calibration. Radiat Phys Chem. doi: 10.1016/j.radphyschem.2016.01.041 Google Scholar
  7. 7.
    Stojkovic I, Nikolov J, Tomic M, Micic R, Todorovic N (2017) Biogenic fraction determination in fuel—optimal parameters survey. Fuel 191:330–338CrossRefGoogle Scholar
  8. 8.
    Baxter MS, Walton A (1971) Carbon-14 concentrations in recent wines and spirits. J Food Sci 36(3):540–541CrossRefGoogle Scholar
  9. 9.
    Fischer E, Muller H, Rapp A, Steffan H (1980) Tritium- und Kohlenstoff-14-Gehalte von Weinen verschiedener Jahrgange der nordichen undsudlichen Hemisphare. Lebensm Unters Forch. 171(4):269–271CrossRefGoogle Scholar
  10. 10.
    Schonhofer F (1989) Determination of 14C in alcoholic beverage. Radiocarbon 31(3):777–784CrossRefGoogle Scholar
  11. 11.
    Schonhofer F (1992) 14C in Austrian wine and vinegar. Radiocarbon 34:768–771CrossRefGoogle Scholar
  12. 12.
    Edler R, Kaihola L (2007) Determination of the 14C content in fuels containing bioethanol and other biogenic materials with liquid scintillation counting. LSC Application Note 43. PerkinElmerGoogle Scholar
  13. 13.
    Horvatincic N, Baresic J, Krajcar Bronic I, Obelic B (2004) Measurement of low 14C activities in liquid scintillation counter in the Zagreb radiocarbon laboratory. Radiocarbon 46:105–116CrossRefGoogle Scholar
  14. 14.
    Faurescu I, Varlam C, Faurescu D, Vagner I, Cosma C, Costinel D (2015) Underground water dating and age corrections using radiocarbon. J Radioannal Nucl Chem 306(1):263–269CrossRefGoogle Scholar
  15. 15.
    Canduccci C, Bartolomei P, Magnani G, Rizzo A, Piccoli A, Tositti L, Esposito M (2013) Upgrade of the CO2 direct absorption method for low-level 14C liquid scintillation counting. Radiocarbon 55:260–267CrossRefGoogle Scholar
  16. 16.
    Svetlik I, Fejgl M, Turek K, Michalek V, Tomaskova L (2012) 14C studies in the vicinity of the Czech NPPs. J Radioannal Nucl Chem 292:689–695CrossRefGoogle Scholar
  17. 17.
    Woo HJ, Cho SY, Chun SK, Kim NB, Kang DW, Kim EH (1999) Sample treatment techniques for the determination of environmental radiocarbon in a nuclear power station area. J Radioannal Nucl Chem 239(3):533–538CrossRefGoogle Scholar
  18. 18.
    Krajcar Bronic I, Horvatincic N, Baresic J, Obelic B (2009) Measurement of 14C activity by liquid scintillation counting. Appl Radiat Isot 67:800–804CrossRefGoogle Scholar
  19. 19.
    Culp R, Cherkinsky A, Ravi Prasad GV (2014) Comparison of radiocarbon techniques for the assessment of biobase content in fuels. Appl Radiat Isot 93:106–109CrossRefGoogle Scholar
  20. 20.
    Noakes J, Norton G, Culp R, Nigam M, Dvoracek D (2006) In: Chalupnik S et al (eds) LSC 2005. Advances in liquid scintillation spectrometry, radiocarbon, Tucson, arizona, USAGoogle Scholar
  21. 21.
    Faurescu I, Varlam C, Stefanescu I, Cuna S, Vagner I, Faurescu D, Bogdan D (2010) Direct absorption method and liquid scintillation counting for radiocarbon measurements in organic carbon from sediments. Radiocarbon 52(2):794–799CrossRefGoogle Scholar
  22. 22.
    Varlam C, Stefanescu I, Varlam M, Popescu I, Faurescu I (2007) Applying the direct absorption method and LSC for 14C concentration measurement in aqueous samples. Radiocarbon 49(2):281–289CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Irina Vagner
    • 1
  • Carmen Varlam
    • 1
  • Ionut Faurescu
    • 1
  • Denisa Faurescu
    • 1
  • Felicia Bucura
    • 1
  1. 1.National R&D Institute for Cryogenics and Isotopic Technologies – ICSIRm. ValceaRomania

Personalised recommendations