Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 2, pp 813–826 | Cite as

Inter-laboratory exercise with an aim to compare methods for 90Sr and 239,240Pu determination in environmental soil samples

  • Jixin Qiao
  • Susanna Salminen-Paatero
  • Stina Holmgren Rondahl
  • Marie Bourgeaux-Goget
  • Per Roos
  • Petra Lagerkvist
  • Elisabeth Strålberg
  • Henrik Ramebäck
Article
  • 149 Downloads

Abstract

In order to deliver reliable results for a multitude of different scenarios, e.g. emergency preparedness, environmental monitoring, nuclear decommissioning and waste management, there is a constant process of method development in the field of radioanalytical chemistry. This work presents the results of a method comparison exercise aimed at quantifying 90Sr and 239,240Pu in environmental soil samples, with the intention of evaluating the performance and applicability of different methods. From the methods examined in this work, recommendations are given in order to find a radioanalytical measurement procedure, for 90Sr and 239,240Pu analysis, which is fit-for-purpose for a particular scenario.

Keywords

Method comparison Radiochemical analysis Pu Sr Soil 

Notes

Acknowledgements

The authors convey their gratitude to Nordic Nuclear Safety Research (NKS) for the financial support to this work. Salminen-Paatero wishes to thank EU-project “TOXI Triage” (Project id. 653409) for the support of her work.

Supplementary material

10967_2017_5385_MOESM1_ESM.docx (30 kb)
Supplementary material 1 (DOCX 30 kb)

References

  1. 1.
    Holmgren S, Tovedal A, Björnham O, Ramebäck H (2016) Time optimization of 90Sr measurements: sequential measurement of multiple samples during ingrowth of 90Y. Appl Radiat Isot 110:150–154. doi: 10.1016/j.apradiso.2016.01.011 CrossRefGoogle Scholar
  2. 2.
    Tovedal A, Nygren U, Ramebäck H (2008) Determination of 90Sr in preparedness: optimization of total analysis time for multiple samples. J Radioanal Nucl Chem 276:357–362. doi: 10.1007/s10967-008-0512-2 CrossRefGoogle Scholar
  3. 3.
    Ramebäck H, Albinsson Y, Skålberg M et al (1995) Rapid determination of 90Sr optimum use of a limited total analysis time. Nucl Instrum Methods Phys Res Sect A 357:540–545CrossRefGoogle Scholar
  4. 4.
    Qiao J, Hou X, Roos P, Miró M (2011) Rapid isolation of plutonium in environmental solid samples using sequential injection anion exchange chromatography followed by detection with inductively coupled plasma mass spectrometry. Anal Chim Acta 685:111–119. doi: 10.1016/j.aca.2010.10.029 CrossRefGoogle Scholar
  5. 5.
    Qiao J, Hou X, Roos P, Miró M (2011) High-throughput sequential injection method for simultaneous determination of plutonium and neptunium in environmental solids using macroporous anion-exchange chromatography, followed by inductively coupled plasma mass spectrometric detection. Anal Chem 83:374–381CrossRefGoogle Scholar
  6. 6.
    Qiao J, Hou X, Roos P, Miro M (2009) Rapid determination of plutonium isotopes in environmental samples using sequential injection extraction chromatography and detection by inductively coupled plasma mass spectrometry. Anal Chem 81:8185–8192. doi: 10.1016/j.aca.2009.03.010.(4) CrossRefGoogle Scholar
  7. 7.
    Egorov OB, O’Har MJ, Grate JW (2004) Microwave-assisted sample treatment in a fully automated flow-based instrument: oxidation of reduced technetium species in the analysis of total technetium-99 in caustic aged nuclear waste samples. Anal Chem 76:3869–3877. doi: 10.1021/ac0497196 CrossRefGoogle Scholar
  8. 8.
    Chung KH, Choi SD, Choi GS, Kang MJ (2013) Design ans performance of an automated radionuclide separator: its application on the determination of 99Tc in groundwater. Appl Radiat Isot 81:57–61CrossRefGoogle Scholar
  9. 9.
    Zoriy P, Flucht R, Burow M et al (2010) Development of a relatively cheap and simple automated separation system for a routine separation procedure based on extraction chromatography. J Radioanal Nucl Chem 286:211–216. doi: 10.1007/s10967-010-0640-3 CrossRefGoogle Scholar
  10. 10.
    Milliard A, Durand-Jezequel M, Lariviere D (2011) Sequential automated fusion/extraction chromatography methodology for the dissolution of uranium in environmental samples for mass spectrometric determination. Anal Chim Acta 684:40–46. doi: 10.1016/j.aca.2010.10.037 CrossRefGoogle Scholar
  11. 11.
    Lariviere D, Benkhedda K, Kiser S et al (2010) Rapid and automated sequential determination of ultra-trace long-lived actinides in air filters by inductively coupled plasma mass spectrometry. Anal Methods 2:259–267. doi: 10.1039/b9ay00197b CrossRefGoogle Scholar
  12. 12.
    Roos P, Nygren U, Appelblad P et al (2006) NKS-Norcmass reference material for analysis of Pu-isotopes and 237Np by mass spectrometry. NKS-135. Roskilde, DenmarkGoogle Scholar
  13. 13.
    Osvath I, Tarjan S, Pitois A et al (2016) IAEA’s ALMERA network: supporting the quality of environmental radioactivity measurements. Appl Radiat Isot 109:90–95. doi: 10.1016/j.apradiso.2015.12.062 CrossRefGoogle Scholar
  14. 14.
    Lochamy JC (1976) The Minimum-detectable-activity concept. NBS SP456. GaithersburgGoogle Scholar
  15. 15.
    Currie LA (1968) Limits for qualitative detection and quantitative determination. Anal Chem 40:586CrossRefGoogle Scholar
  16. 16.
    Miller JN, Miller JC (2000) Statistics and chemometrics for analytical chemistry, six. Prentice Hall, Upper Saddle RiverGoogle Scholar
  17. 17.
    Nygren U, Rodushkin I, Nilsson C, Baxter DC (2003) Separation of plutonium from soil and sediment prior to determination by inductively coupled plasma mass spectrometry. J Anal At Spectrom 18:1426–1434. doi: 10.1039/B306357G CrossRefGoogle Scholar
  18. 18.
    Maxwell SL, Culligan B (2015) Rapid fusion method for the determination of Pu, Np, and Am in large soil samples. J Radioanal Nucl Chem. doi: 10.1007/s10967-015-3992-x Google Scholar
  19. 19.
    Jia GG, Torri G (2007) Determination of Pb-210 and Po-210 in soil or rock samples containing refractory matrices. Appl Radiat Isot 65:1–8. doi: 10.1016/j.apradiso.2006.05.007ER CrossRefGoogle Scholar
  20. 20.
    McDonald P, Cook GT, Baxter MS, Thompson JC (1992) The terrestrial distribution of artificial radioactivity in south-west Scotland. Sci Total Environ 111:59–82. doi: 10.1016/0048-9697(92)90045-T CrossRefGoogle Scholar
  21. 21.
    Shen C-C, Lawrence Edwards R, Cheng H et al (2002) Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry. Chem Geol 185:165–178. doi: 10.1016/S0009-2541(01)00404-1 CrossRefGoogle Scholar
  22. 22.
    Blanco P, Tomé FV, Lozano JC (2005) Fractionation of natural radionuclides in soils from a uranium mineralized area in the south-west of Spain. J Environ Radioact 79:315–330. doi: 10.1016/j.jenvrad.2004.08.006 CrossRefGoogle Scholar
  23. 23.
    Qiao J, Hou X, Miró M, Roos P (2009) Determination of plutonium isotopes in waters and environmental solids: a review. Anal Chim Acta 652:66–84. doi: 10.1016/j.aca.2009.03.010 CrossRefGoogle Scholar
  24. 24.
    Salminen S, Paatero J (2009) Concentrations of 238Pu, 239 + 240Pu and 241Pu in the surface air in Finnish Lapland in 1963. Boreal Environ Res 14:827–836Google Scholar
  25. 25.
    Salminen-Paatero S, Paatero J (2012) Total beta activity, 137Cs and 90Sr in surface air in northern Finland in 1963. Radiochim Acta 100:801–808CrossRefGoogle Scholar
  26. 26.
    Tovedal A, Nygren U, Ramebäck H (2009) Methodology for determination of 89Sr and90Sr in radiological emergency: I. Scenario dependent evaluation of potentially interfering radionuclides. J Radioanal Nucl Chem 282:455. doi: 10.1007/s10967-009-0177-5 CrossRefGoogle Scholar
  27. 27.
    Lee MH, Ahn HJ, Park JH et al (2011) Rapid sequential determination of Pu, 90Sr and 241Am nuclides in environmental samples using an anion exchange and Sr-Spec resins. Appl Radiat Isot 69:295–298. doi: 10.1016/j.apradiso.2010.09.018 CrossRefGoogle Scholar
  28. 28.
    Vajda N, Kim C-K (2010) Determination of Pu isotopes by alpha spectrometry: a review of analytical methodology. J Radioanal Nucl Chem 283:203–223. doi: 10.1007/s10967-009-0342-x CrossRefGoogle Scholar
  29. 29.
    Hou X, Roos P (2008) Critical comparison of radiometric and mass spectrometric methods for the determination of radionuclides in environmental, biological and nuclear waste samples. Anal Chim Acta 608:105–139. doi: 10.1016/j.aca.2007.12.012 CrossRefGoogle Scholar
  30. 30.
    Lehto J, Hou X (2010) Chemistry and Analysis of radionuclides. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  31. 31.
    Chen QJ, Aarkrog A, Nielsen SP et al (2001) Procedures for determination of 239,240Pu, 241Am, 237Np, 234,238U, 228,230,232Th, 99Tc and 210Pb-210Po in environmental materials. Risø National Laboratory, RoskildeGoogle Scholar
  32. 32.
    Chen QJ, Hou XL, Yu YX et al (2002) Separation of Sr from Ca, Ba and Ra by means of Ca(OH)2 nd Ba(Ra)Cl2 or Ba(Ra)SO4 for the determination of radiostrontium. Anal Chim Acta 466:109–116CrossRefGoogle Scholar
  33. 33.
    Popov L, Mihailova G, Hristova I et al (2009) Separation of strontium from calcium by the use of sodium hydroxide and its application for the determination of long-term background activity concentrations of 90Sr in 100 km area around Kozloduy Nuclear Power Plant (Bulgaria). J Radioanal Nucl Chem 279:49–64. doi: 10.1007/s10967-007-7235-7 CrossRefGoogle Scholar
  34. 34.
    Dietz ML, Horwitz EP, Nelson DM, Wahlgren M (1992) An improved method for determining 89Sr and 90Sr in urine. Health Phys 61:871–877CrossRefGoogle Scholar
  35. 35.
    De Muynck D, Huelga-suarez G, Van Heghe L (2009) Systematic evaluation of a strontium-specific extraction chromatographic resin for obtaining a purified Sr fraction with quantitative recovery from complex and Ca-rich matrices. J Anal At Spectrom 24:1498–1510. doi: 10.1039/b908645e CrossRefGoogle Scholar
  36. 36.
    Jakopič R, Benedik L (2005) Tracer studies on Sr resin and determination of 90Sr in environmental samples. Acta Chim Slov 52:297–302Google Scholar
  37. 37.
    Holmgren S, Tovedal A, Jonsson S et al (2014) Handling interferences in 89Sr and 90Sr measurements of reactor coolant water: a method based on strontium separation chemistry. Appl Radiat Isot 90:94–101. doi: 10.1016/j.apradiso.2014.03.022 CrossRefGoogle Scholar
  38. 38.
    Tovedal A, Nygren U, Lagerkvist P et al (2009) Methodology for determination of 89Sr and 90Sr in radiological emergency: II. Method development and evaluation. J Radioanal Nucl Chem 282:461–466. doi: 10.1007/s10967-009-0179-3 Google Scholar
  39. 39.
    Amano H, Sakamoto H, Shiga N, Suzuki K (2016) Method for rapid screening analysis of Sr-90 in edible plant samples collected near Fukushima, Japan. Appl Radiat Isot 112:131–135. doi: 10.1016/j.apradiso.2016.03.026 CrossRefGoogle Scholar
  40. 40.
    Tazoe H, Obata H, Yamagata T et al (2016) Determination of strontium-90 from direct separation of yttrium-90 by solid phase extraction using DGA Resin for seawater monitoring. Talanta. doi: 10.1016/j.talanta.2016.01.065 Google Scholar
  41. 41.
    Maxwell SL, Culligan B, Hutchison JB et al (2016) Rapid method to determine 89Sr/90Sr in large concrete samples. J Radioanal Nucl Chem 310:399–411. doi: 10.1007/s10967-016-4787-4 CrossRefGoogle Scholar
  42. 42.
    Xu Y, Qiao J, Hou X et al (2014) Determination of plutonium isotopes (238Pu, 239Pu, 240Pu, 241Pu) in environmental samples using radiochemical separation combined with radiometric and mass spectrometric measurements. Talanta 119:590–595. doi: 10.1016/j.talanta.2013.11.061 CrossRefGoogle Scholar
  43. 43.
    Qiao J, Hou X, Roos P, Miró M (2010) Rapid and simultaneous determination of neptunium and plutonium isotopes in environmental samples by extraction chromatography using sequential injection analysis and ICP-MS. J Anal At Spectrom 25:1769. doi: 10.1039/c003222k CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Center for Nuclear TechnologiesTechnical University of Denmark (DTU Nutech)LyngbyDenmark
  2. 2.Department of Chemistry - RadiochemistryUniversity of Helsinki (UH)HelsinkiFinland
  3. 3.CBRN Defence and SecuritySwedish Defence Research Agency (FOI)StockholmSweden
  4. 4.Health and Safety DepartmentInstitute for Energy Technology (IFE)KjellerNorway
  5. 5.Department of Chemistry and Chemical Engineering, Nuclear ChemistryChalmers University of TechnologyGothenburgSweden

Personalised recommendations