Skip to main content
Log in

Inter-laboratory exercise with an aim to compare methods for 90Sr and 239,240Pu determination in environmental soil samples

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 11 October 2017

This article has been updated

Abstract

In order to deliver reliable results for a multitude of different scenarios, e.g. emergency preparedness, environmental monitoring, nuclear decommissioning and waste management, there is a constant process of method development in the field of radioanalytical chemistry. This work presents the results of a method comparison exercise aimed at quantifying 90Sr and 239,240Pu in environmental soil samples, with the intention of evaluating the performance and applicability of different methods. From the methods examined in this work, recommendations are given in order to find a radioanalytical measurement procedure, for 90Sr and 239,240Pu analysis, which is fit-for-purpose for a particular scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 11 October 2017

    In the original article, the LOD assigned to method Sr-B in Table 1 was published incorrectly as 24 Bq/kg, the correct LOD for that method should be 10.4 Bq/kg. As a consequence the range of LODs, as presented in the first sentence of the section Limit of detection should be stated as “It can be seen from Table 1 that, the LODs of 90Sr vary from 0.2 to 10.4 Bq/kg among the four methods used in this work”.

References

  1. Holmgren S, Tovedal A, Björnham O, Ramebäck H (2016) Time optimization of 90Sr measurements: sequential measurement of multiple samples during ingrowth of 90Y. Appl Radiat Isot 110:150–154. doi:10.1016/j.apradiso.2016.01.011

    Article  CAS  Google Scholar 

  2. Tovedal A, Nygren U, Ramebäck H (2008) Determination of 90Sr in preparedness: optimization of total analysis time for multiple samples. J Radioanal Nucl Chem 276:357–362. doi:10.1007/s10967-008-0512-2

    Article  CAS  Google Scholar 

  3. Ramebäck H, Albinsson Y, Skålberg M et al (1995) Rapid determination of 90Sr optimum use of a limited total analysis time. Nucl Instrum Methods Phys Res Sect A 357:540–545

    Article  Google Scholar 

  4. Qiao J, Hou X, Roos P, Miró M (2011) Rapid isolation of plutonium in environmental solid samples using sequential injection anion exchange chromatography followed by detection with inductively coupled plasma mass spectrometry. Anal Chim Acta 685:111–119. doi:10.1016/j.aca.2010.10.029

    Article  CAS  Google Scholar 

  5. Qiao J, Hou X, Roos P, Miró M (2011) High-throughput sequential injection method for simultaneous determination of plutonium and neptunium in environmental solids using macroporous anion-exchange chromatography, followed by inductively coupled plasma mass spectrometric detection. Anal Chem 83:374–381

    Article  CAS  Google Scholar 

  6. Qiao J, Hou X, Roos P, Miro M (2009) Rapid determination of plutonium isotopes in environmental samples using sequential injection extraction chromatography and detection by inductively coupled plasma mass spectrometry. Anal Chem 81:8185–8192. doi:10.1016/j.aca.2009.03.010.(4)

    Article  CAS  Google Scholar 

  7. Egorov OB, O’Har MJ, Grate JW (2004) Microwave-assisted sample treatment in a fully automated flow-based instrument: oxidation of reduced technetium species in the analysis of total technetium-99 in caustic aged nuclear waste samples. Anal Chem 76:3869–3877. doi:10.1021/ac0497196

    Article  CAS  Google Scholar 

  8. Chung KH, Choi SD, Choi GS, Kang MJ (2013) Design ans performance of an automated radionuclide separator: its application on the determination of 99Tc in groundwater. Appl Radiat Isot 81:57–61

    Article  CAS  Google Scholar 

  9. Zoriy P, Flucht R, Burow M et al (2010) Development of a relatively cheap and simple automated separation system for a routine separation procedure based on extraction chromatography. J Radioanal Nucl Chem 286:211–216. doi:10.1007/s10967-010-0640-3

    Article  CAS  Google Scholar 

  10. Milliard A, Durand-Jezequel M, Lariviere D (2011) Sequential automated fusion/extraction chromatography methodology for the dissolution of uranium in environmental samples for mass spectrometric determination. Anal Chim Acta 684:40–46. doi:10.1016/j.aca.2010.10.037

    Article  CAS  Google Scholar 

  11. Lariviere D, Benkhedda K, Kiser S et al (2010) Rapid and automated sequential determination of ultra-trace long-lived actinides in air filters by inductively coupled plasma mass spectrometry. Anal Methods 2:259–267. doi:10.1039/b9ay00197b

    Article  CAS  Google Scholar 

  12. Roos P, Nygren U, Appelblad P et al (2006) NKS-Norcmass reference material for analysis of Pu-isotopes and 237Np by mass spectrometry. NKS-135. Roskilde, Denmark

    Google Scholar 

  13. Osvath I, Tarjan S, Pitois A et al (2016) IAEA’s ALMERA network: supporting the quality of environmental radioactivity measurements. Appl Radiat Isot 109:90–95. doi:10.1016/j.apradiso.2015.12.062

    Article  CAS  Google Scholar 

  14. Lochamy JC (1976) The Minimum-detectable-activity concept. NBS SP456. Gaithersburg

  15. Currie LA (1968) Limits for qualitative detection and quantitative determination. Anal Chem 40:586

    Article  CAS  Google Scholar 

  16. Miller JN, Miller JC (2000) Statistics and chemometrics for analytical chemistry, six. Prentice Hall, Upper Saddle River

    Google Scholar 

  17. Nygren U, Rodushkin I, Nilsson C, Baxter DC (2003) Separation of plutonium from soil and sediment prior to determination by inductively coupled plasma mass spectrometry. J Anal At Spectrom 18:1426–1434. doi:10.1039/B306357G

    Article  CAS  Google Scholar 

  18. Maxwell SL, Culligan B (2015) Rapid fusion method for the determination of Pu, Np, and Am in large soil samples. J Radioanal Nucl Chem. doi:10.1007/s10967-015-3992-x

    Google Scholar 

  19. Jia GG, Torri G (2007) Determination of Pb-210 and Po-210 in soil or rock samples containing refractory matrices. Appl Radiat Isot 65:1–8. doi:10.1016/j.apradiso.2006.05.007ER

    Article  CAS  Google Scholar 

  20. McDonald P, Cook GT, Baxter MS, Thompson JC (1992) The terrestrial distribution of artificial radioactivity in south-west Scotland. Sci Total Environ 111:59–82. doi:10.1016/0048-9697(92)90045-T

    Article  CAS  Google Scholar 

  21. Shen C-C, Lawrence Edwards R, Cheng H et al (2002) Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry. Chem Geol 185:165–178. doi:10.1016/S0009-2541(01)00404-1

    Article  CAS  Google Scholar 

  22. Blanco P, Tomé FV, Lozano JC (2005) Fractionation of natural radionuclides in soils from a uranium mineralized area in the south-west of Spain. J Environ Radioact 79:315–330. doi:10.1016/j.jenvrad.2004.08.006

    Article  CAS  Google Scholar 

  23. Qiao J, Hou X, Miró M, Roos P (2009) Determination of plutonium isotopes in waters and environmental solids: a review. Anal Chim Acta 652:66–84. doi:10.1016/j.aca.2009.03.010

    Article  CAS  Google Scholar 

  24. Salminen S, Paatero J (2009) Concentrations of 238Pu, 239 + 240Pu and 241Pu in the surface air in Finnish Lapland in 1963. Boreal Environ Res 14:827–836

    CAS  Google Scholar 

  25. Salminen-Paatero S, Paatero J (2012) Total beta activity, 137Cs and 90Sr in surface air in northern Finland in 1963. Radiochim Acta 100:801–808

    Article  CAS  Google Scholar 

  26. Tovedal A, Nygren U, Ramebäck H (2009) Methodology for determination of 89Sr and90Sr in radiological emergency: I. Scenario dependent evaluation of potentially interfering radionuclides. J Radioanal Nucl Chem 282:455. doi:10.1007/s10967-009-0177-5

    Article  CAS  Google Scholar 

  27. Lee MH, Ahn HJ, Park JH et al (2011) Rapid sequential determination of Pu, 90Sr and 241Am nuclides in environmental samples using an anion exchange and Sr-Spec resins. Appl Radiat Isot 69:295–298. doi:10.1016/j.apradiso.2010.09.018

    Article  CAS  Google Scholar 

  28. Vajda N, Kim C-K (2010) Determination of Pu isotopes by alpha spectrometry: a review of analytical methodology. J Radioanal Nucl Chem 283:203–223. doi:10.1007/s10967-009-0342-x

    Article  CAS  Google Scholar 

  29. Hou X, Roos P (2008) Critical comparison of radiometric and mass spectrometric methods for the determination of radionuclides in environmental, biological and nuclear waste samples. Anal Chim Acta 608:105–139. doi:10.1016/j.aca.2007.12.012

    Article  CAS  Google Scholar 

  30. Lehto J, Hou X (2010) Chemistry and Analysis of radionuclides. Wiley-VCH, Weinheim

    Book  Google Scholar 

  31. Chen QJ, Aarkrog A, Nielsen SP et al (2001) Procedures for determination of 239,240Pu, 241Am, 237Np, 234,238U, 228,230,232Th, 99Tc and 210Pb-210Po in environmental materials. Risø National Laboratory, Roskilde

    Google Scholar 

  32. Chen QJ, Hou XL, Yu YX et al (2002) Separation of Sr from Ca, Ba and Ra by means of Ca(OH)2 nd Ba(Ra)Cl2 or Ba(Ra)SO4 for the determination of radiostrontium. Anal Chim Acta 466:109–116

    Article  CAS  Google Scholar 

  33. Popov L, Mihailova G, Hristova I et al (2009) Separation of strontium from calcium by the use of sodium hydroxide and its application for the determination of long-term background activity concentrations of 90Sr in 100 km area around Kozloduy Nuclear Power Plant (Bulgaria). J Radioanal Nucl Chem 279:49–64. doi:10.1007/s10967-007-7235-7

    Article  CAS  Google Scholar 

  34. Dietz ML, Horwitz EP, Nelson DM, Wahlgren M (1992) An improved method for determining 89Sr and 90Sr in urine. Health Phys 61:871–877

    Article  Google Scholar 

  35. De Muynck D, Huelga-suarez G, Van Heghe L (2009) Systematic evaluation of a strontium-specific extraction chromatographic resin for obtaining a purified Sr fraction with quantitative recovery from complex and Ca-rich matrices. J Anal At Spectrom 24:1498–1510. doi:10.1039/b908645e

    Article  CAS  Google Scholar 

  36. Jakopič R, Benedik L (2005) Tracer studies on Sr resin and determination of 90Sr in environmental samples. Acta Chim Slov 52:297–302

    Google Scholar 

  37. Holmgren S, Tovedal A, Jonsson S et al (2014) Handling interferences in 89Sr and 90Sr measurements of reactor coolant water: a method based on strontium separation chemistry. Appl Radiat Isot 90:94–101. doi:10.1016/j.apradiso.2014.03.022

    Article  CAS  Google Scholar 

  38. Tovedal A, Nygren U, Lagerkvist P et al (2009) Methodology for determination of 89Sr and 90Sr in radiological emergency: II. Method development and evaluation. J Radioanal Nucl Chem 282:461–466. doi:10.1007/s10967-009-0179-3

    CAS  Google Scholar 

  39. Amano H, Sakamoto H, Shiga N, Suzuki K (2016) Method for rapid screening analysis of Sr-90 in edible plant samples collected near Fukushima, Japan. Appl Radiat Isot 112:131–135. doi:10.1016/j.apradiso.2016.03.026

    Article  CAS  Google Scholar 

  40. Tazoe H, Obata H, Yamagata T et al (2016) Determination of strontium-90 from direct separation of yttrium-90 by solid phase extraction using DGA Resin for seawater monitoring. Talanta. doi:10.1016/j.talanta.2016.01.065

    Google Scholar 

  41. Maxwell SL, Culligan B, Hutchison JB et al (2016) Rapid method to determine 89Sr/90Sr in large concrete samples. J Radioanal Nucl Chem 310:399–411. doi:10.1007/s10967-016-4787-4

    Article  CAS  Google Scholar 

  42. Xu Y, Qiao J, Hou X et al (2014) Determination of plutonium isotopes (238Pu, 239Pu, 240Pu, 241Pu) in environmental samples using radiochemical separation combined with radiometric and mass spectrometric measurements. Talanta 119:590–595. doi:10.1016/j.talanta.2013.11.061

    Article  CAS  Google Scholar 

  43. Qiao J, Hou X, Roos P, Miró M (2010) Rapid and simultaneous determination of neptunium and plutonium isotopes in environmental samples by extraction chromatography using sequential injection analysis and ICP-MS. J Anal At Spectrom 25:1769. doi:10.1039/c003222k

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors convey their gratitude to Nordic Nuclear Safety Research (NKS) for the financial support to this work. Salminen-Paatero wishes to thank EU-project “TOXI Triage” (Project id. 653409) for the support of her work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jixin Qiao.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s10967-017-5496-3.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, J., Salminen-Paatero, S., Rondahl, S.H. et al. Inter-laboratory exercise with an aim to compare methods for 90Sr and 239,240Pu determination in environmental soil samples. J Radioanal Nucl Chem 314, 813–826 (2017). https://doi.org/10.1007/s10967-017-5385-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5385-9

Keywords

Navigation